

生产厂家:广州南方卫星导航仪器有限公司 电话: 020—23380888 地址: 广州市天河区思成路39号南方测绘地理信息产业园6楼 http://www.southgnss.com

测绘之星用户操作手册

目录

-,	预餐	备事项	8
	1.1	预防事项	8
	1.2	激光安全指南	9
	1.3	仪器开箱和存放	12
	1.4	安装仪器	12
	1.5	电池的装卸、信息和充电	18
	1.6	反射棱镜	22
	1.7	基座的拆卸	23
	1.8	望远镜目镜调整和目标校准	25
	1.9	打开和关闭电源	28

《测绘之星操作手册》

二,	操作入门	29
	2.1 Tsever 注册服务	
	2.2 显示符号意义	
	2.3 基本操作	
三、	测量	41
	3.1 测量	41
	3.2 文件	45
	3.3 点放样	46
四、	建站	49
	4.1 已知点建站	
	4.2 测站高程	61
	4.3 后视检查	63
	4.4 后方交会	64
	4.5 点到直线建站	70
	4.6 任意建站	75
	4.7 免控建站	

《测绘之星操作手册》

五、	采集	93
	5.1 点测量	94
	5.2 距离偏心	98
	5.3 平面偏心	
	5.4 圆柱中心点	107
	5.5 悬高测量	
	5.6 对边测量	116
	5.7 线和延长点	121
	5.8 线和角点测量	126
	5.9 点投影	131
	5.10 线高测量	136
六、	放样	140
	6.1 点放样	141
	6.2 CAD 放样	144
	6.3 角度距离放样	151
	6.4 方向线放样	

《测绘之星操作手册》

	6.5 直线放样	159
	6.6 参考线放样	161
	6.7 参考弧放样	167
七、	工程	178
	7.1 新建工程	178
八、	计算	179
	8.1 归算	181
	8.2 坐标正算	181
	8.3 坐标反算	182
	8.4 面积周长	183
	8.5 夹角计算	184
	8.6 单位换算	184
	8.7 角度换算	185
	8.8 求平均值	185
	8.9 计算等距点	186
	8.10 三角形计算	186

《测绘之星操作手册》

201

《测绘之星操作手册》

11.1 数据	
11.2 编码	
11.3 图形	
十二、快捷设置-★号键	
12.1 激光指示	
12.2 十字丝照明	
12.3 激光下对点	
12.4 温度气压设置	
12.5 棱镜常数	
十三、仪器的检校	
13.1 长水准器	
13.2 圆水准器	
13.3 望远镜分划板的检校	
13.4 电子补偿的检验与校正	
13.5 竖盘指标零点自动补偿的检校	
13.6 视准轴与横轴的垂直度(2C)的检校	

13.7 竖盘指标差(i角)的检校和竖盘指标零点设置	223
13.8 组合校正	225
13.9 竖轴与横轴的垂直度(高低差)	229
13.10 激光对点器	234
13.11 仪器常数(K)	236
13.12 视准轴与发射电光轴的重合度	238
13.13 基座脚螺旋	239
13.14 反射棱镜有关组合件	239
【附录】	241
1、 原始数据格式	241
2、 坐标数据格式	244

一、预备事项

1.1 预防事项

1.日光下测量应避免将物镜直接瞄准太阳。若在太阳下作业应安装滤光镜。
 2.避免在高温和低温下存放仪器,亦应避免温度骤变(使用时气温变化除外)。
 3.仪器不使用时,应将其装入箱内,置于干燥处,注意防震、防尘和防潮。
 4.若仪器工作处的温度与存放处的温度差异太大,应先将仪器留在箱内,直至它适应环境温度后再使用仪器。

5.仪器长期不使用时,应将仪器上的电池卸下分开存放。电池应每月充电一次。 6.仪器运输应将仪器装于箱内进行,运输时应小心避免挤压、碰撞和剧烈震动,长途运输最 好在箱子周围使用软垫。

7.仪器安装至三脚架或从三脚架拆卸时,要一只手先握住仪器,以防仪器跌落。

8.外露光学件需要清洁时,应用脱脂棉或镜头纸轻轻擦净,切不可用其它物品擦拭。9.仪器使用完毕后,用绒布或毛刷清除仪器表面灰尘。仪器被雨水淋湿后,切勿通电开机,应用干净软布擦干并在通风处放一段时间。

10.作业前应仔细全面检查仪器,确信仪器各项指标、功能、电源、初始设置和改正参数均符合要求时再进行作业。

11.即使发现仪器功能异常,非专业维修人员不可擅自拆开仪器,以免发生不必要的损坏。 12.本系列全站仪发射光是激光,使用时不得对准眼睛。

13.保持触摸屏清洁,不要用利器擦刮触摸屏。

14.仪器技术指标和外观及其使用说明书会因改进产品而改变, 恕不另行通知, 敬请谅解。

1.2 激光安全指南

●内置测距仪(可见激光)

●警告:

全站仪配备激光等级 3R 测距仪由以下标识辨认:

在仪器正镜垂直制微动上方贴有警告标签:"LASER 3R",对面也有一张同样的标签。

该产品属于 Class 3R 级激光产品,根据下列标准

GB7247.1-2012: 《激光产品的安全》

Class 3R 激光产品:连续观察激光束是有害的,要避免激光直射眼睛。

●警告:

连续直视激光束是有害的。

●预防:

不要用眼睛盯着激光束看,也不要用激光束指向别人。反射光束对仪器来说都是有效测量。

●警告:

当激光束照射在如棱镜、平面镜、金属表面、窗户上时,用眼睛直接观看反射光可能具 有危险性。

●预防:

不要盯着激光反射的地方看。在激光开关打开时(测距模式),不要在激光光路或棱镜旁 边看。只能通过全站仪的望远镜观看照准棱镜。

●警告:

不正确使用 Class 3R 激光设备是有危险性的。

●预防:

要避免造成伤害,让每个使用者都切实做好安全预防措施,必须在可能发生危害的距离内(依标准 GB7247.1-2012)做好控制。

●下面是有关标准的主要部分的解释:

Class 3R 级激光产品在室外和建筑工地使用(测量、定线、操平)。

a 只有经过相关培训和认证的人才可以安装、调试和操作此类激光设备。

b 在使用区域范围内设立相应激光警告标志。

c 要防止任何人用眼睛直视激光束或使用光学仪器观看激光束。

d 为了防止激光对人的损害,在工作路线的末端应挡住激光束,在激光束穿过限制区域(有害距离*),且有人活动时必须终止激光束。

e 激光束的通过路线必须设置在高于或低于人的视线。

f 激光产品在不用时,妥善保管存放,未经认证的人不得使用。

g 要防止激光束无意间照射如平面镜、金属表面、窗户等,特别要小心如平面镜、凹面 镜的表面。

*有害距离是指从激光束起点至激光束减弱到不会对人造成伤害的最大距离。

●配有 Class 3R 激光器的内置测距仪产品,有害距离是 1000m(3300ft),在此距离以外,激光强度减弱到 Class 1(眼睛直观光束不会造成伤害)。

1.3 仪器开箱和存放

开箱:

轻轻地放下箱子,让其盖朝上,打开箱子的锁栓,开箱盖,取出仪器。 **存放:**

盖好望远镜镜盖,使照准部的垂直制动手轮和基座的圆水准器朝上将仪器平卧(望远镜物镜端朝下)放入箱中,轻轻旋紧垂直制动手轮,盖好箱盖并关上锁栓。

1.4 安装仪器

将仪器安装在三脚架上,精确整平和对中,以保证测量成果的精度,应使用专用的中心 连接螺旋的三脚架。

操作参考: 仪器的整平与对中

1、利用激光对点器对中

1)、架设三角架

将三角架伸到适当高度,确保三腿等长、打开,并使三角架顶面近似水平,且位于测站 点的正上方。将三角架腿支撑在地面上,使其中一条腿固定。

2)、安置仪器和对点

将仪器小心的安置到三角架上,拧紧中心连接螺旋,打开激光对点器。双手握住另外两 条未固定的架腿,通过对激光对点器光斑的观察调节该两条腿的位置。当激光对点器光斑大 致对准侧站点时,使三角架三条腿均固定在地面上。打开电子补偿可激动打开激光下对点,

调节全站仪的三个脚螺旋,使激光对点器光斑精确对准测站点。

3)、利用圆水准器粗平仪器

调整三角架三条腿的高度,使全站仪圆水准气泡居中。

4)、利用管水准器精平仪器

①松开水平制动螺旋,转动仪器,使管水准器平行于某一对角螺旋 A、B 的连线。通过旋转角螺旋 A、B,使管水准气泡居中。旋转两脚螺旋使气泡居中最好采用左拇指法,即左 右手同时转动两个脚螺旋,并且两拇指移动方向相向,左手大拇指方向与气泡管气泡移动方 向相同。

②将仪器旋转 90°, 使其垂直于角螺旋 A、B 的连线。旋转角螺旋 C, 使管水准气泡 居中。

5)、精确对中与整平

通过对激光对点器光斑的观察,轻微松开中心连接螺旋,平移仪器(不可旋转仪器), 使仪器精确对准侧站点。再拧紧中心连接螺旋,再次精平仪器。重复此项操作到仪器精确整 平对中为止。

6)、关闭激光对点器。

注:也可使用电子气泡代替上面的利用管水准器精平仪器,超出±4'范围会自动进入电子水泡界面。

ê #	 Image: Image: Im	
く 电子气泡		▲ y 目二 y 古白的礼侣店
		▼A: 並小 A 刀凹的শ'层值
	○ 补偿-X ○ 补偿-XY 🖲 补偿-关	◆Y:显示Y方向的补偿值
		◆[补偿-关]: 点击关闭双轴补偿
(-())	X: -000°12'57"	◆[补偿- X],占圭打开 X 方向补偿
	Y: -000°19'35"	
	激光对点-开	◆[শ伝-XY]: 点击打开 XY 万回的শ怯,

2、利用垂球对中与整平

1)、安置三脚架

①首先将三角架打开,使三角架的三条腿近似等距,并使顶面近似 水平,拧紧三个固定螺旋。

②使三角架的中心与测点近似位于同一铅垂线上。

③踏紧三角架使之牢固地支撑于地面上。

2)、将仪器安置到三脚架上

将仪器小心地安置到三脚架上,松开中心连接螺旋,在架头上轻移仪器,直到垂球对准 测站点标志中心,然后轻轻拧紧连接螺旋。

3)、利用圆水准器粗平仪器

①旋转两个脚螺旋 A、B, 使圆水准器气泡移到与上述两个脚螺旋中心连线相垂直的一条直线上。

②旋转脚螺旋 C,使圆水准器气泡居中。

4)、利用长水准器精平仪器

①松开水平制动螺旋、转动仪器使管水准器平行于某一对脚螺旋 A、B 的连线。再旋转 脚螺旋 A、B,使管水准器气泡居中。

②将仪器绕竖轴旋转 90°(100gon),再旋转另一个脚螺旋 C,使管水准器气泡居中。 ③再次旋转 90°,重复①②,直至四个位置上气泡居中为止。

3、利用光学对中器对中

1)、架设三角架

将三角架伸到适当高度,确保三腿等长、打开,并使三角架顶面近似水平,且位于测站 点的正上方。将三角架腿支撑在地面上,使其中一条腿固定。

2)、安置仪器和对点

将仪器小心的安置到三角架上,拧紧中心连接螺旋,调整光学对点器,使十字丝成像清晰。双手握住另外两条未固定的架腿,通过对光学对点器的观察调节该两条腿的位置。对光 学对点器大致对准侧站点时,使三角架三条腿均固定在地面上。调节全站仪的三个脚螺旋, 使光学对点器精确对准侧站点。

3)、利用圆水准器粗平仪器

调整三角架三条腿的高度,使全站仪圆水准气泡居中。

4)、利用管水准器精平仪器

①松开水平制动螺旋,转动仪器,使管水准器平行于某一对角螺旋 A、B 的连线。通过旋转角螺旋 A、B,使管水准气泡居中。

《测绘之星操作手册》

②将仪器旋转 90°, 使其垂直于角螺旋 A、B 的连线。旋转角螺旋 C, 使管水准气泡 居中。

5)、精确对中与整平

通过对光学对点器的观察,轻微松开中心连接螺旋,平移仪器(不可旋转仪器),使仪器精确对准侧站点。再拧紧中心连接螺旋,再次精平仪器。重复此项操作到仪器精确整平对中为止。

1.5 电池的装卸、信息和充电

安装电池--把电池放入仪器盖板的电池槽中,用力推电池,使其卡入仪器中。

电池取出--按住电池左右两边的按钮往外拔,取出电池。

电池信息:

当电池电量少于一格时,表示电池电量已经不多,请尽快结束操作,更换电池并充电。

注:

①电池工作时间的长短取决于环境条件,如:周围温度、充电时间和充电的次数等,为安 全起见,建议提前充电或准备一些充好电的备用电池。

②电池剩余容量显示级别与当前的测量模式有关,在角度测量模式下,电池剩余容量够用, 并不能够保证电池在距离测量模式下也能用。因为距离测量模式耗电高于角度测量模式,当从角 度模式转换为距离模式时,由于电池容量不足有时会中止测距并关闭仪器。

电池充电:

电池充电应用专用充电器,本仪器配用 LC-10 充电器。 充电时先将充电器接好电源 220V, 从仪器上取下电池盒,将充电器插头插入电池盒的充电插座。充电器指示灯为红灯时是充电状态,绿灯时为充电完成,绿灯闪烁为故障提示。

(输入: 85V-265V 50/60Hz; 输出: 8.4V——1.2A)

取下机载电池盒时注意事项:

▲ 每次取下电池盒时,都必须先关掉仪器电源,否则可能会对仪器造成损坏,导致丢失数据。

充电时注意事项:

▲ 尽管充电器有过充保护回路,充电结束后仍应将插头从插座中拔出。

▲ 要在0°~ ±45°C温度范围内充电,超出此范围可能充电异常。

▲ 如果充电器与电池已联结好,指示灯却不亮,此时充电器或电池可能损坏,应更换或修 理。

存放时注意事项:

▲ 电池完全放电会缩短其使用寿命。

▲ 为更好地获得电池的最长使用寿命,请保证每月充电一次。

1.6 反射棱镜

本系列全站仪在棱镜模式下进行测量距离等作业时,须在目标处放置反射棱镜。反射棱 镜有单棱镜、微型棱镜或叁棱镜,可通过基座连接器将棱镜组连接在基座上安置到三脚架上, 也可直接安置在对中杆上。棱镜组由用户根据作业需要自行配置。

本公司所生产的棱镜组如图所示:

1.7 基座的拆卸

拆卸:

如有需要,三角基座可从仪器(含采用相同基座的反射棱镜基座连接器)上卸下,先用螺 丝刀松开基座锁定钮固定螺丝,然后逆时针转动锁定钮约180°,即可使仪器与基座分离。

安装:

将仪器的定向凸出标记与基座定向凹槽对齐,把仪器上的三个固定脚对应放入基座的孔 中,使仪器装在三角基座上,顺时针转动锁定钮约180°使仪器与基座锁定,再用螺丝刀将 锁定钮固定螺丝旋紧。

全站仪在使用时需要放置在基座上,但是以前的全站仪的基座不具备可拆卸性能,导致 维修成本高。现在可拆卸的基座可以极大的减轻维修费用。

安平基座

1.8 望远镜目镜调整和目标校准

瞄准目标的方法 (供参考)

①将望远镜对准明亮天空,将目镜筒逆时针旋转到头,再顺时针旋转调焦至看清十字丝 (逆时针方向旋转目镜筒再慢慢旋转调焦清楚十字丝)。

②利用粗瞄准器内的三角形标志的顶尖瞄准目标点,照准时眼睛与瞄准器之间应保留有一定距离。

《测绘之星操作手册》

③利用望远镜调焦螺旋使目标成像清晰。当眼睛在目镜端上下或左右移动发现有视差时,说明调焦或目镜屈光度未调好,这将影响观测的精度,应仔细调焦并调节目镜筒消除视差。

1.9 打开和关闭电源

开机:

长按电源开关(键)两秒左右,直到屏幕亮起 **关机:**

①按住电源键1秒左右,直到弹出关机菜单为止

②要尽量保证正常关机,否则可能导致数据丢失

注:确认显示窗中有足够的电池电量,当显示"电池电量不足"(电池用完)时,应及时更换电池或对电池进行充电,注意关机要按照正常关机操作进行。

二、操作入门

2.1 Tsever 注册服务

客户试用前,需要先查看 TSever 服务平台里面的设备连接是否正确和注册时间是否过 期,避免使用受到影响。

TServer		く设置	
选择型号	南方全站系列 >	工厂设置	>
连接方式		象限蜂鸣	
设备列表	安刀式/们反面列表 ttyMT3:115200 >	測距蜂鸣	
		开机自启动	
先检查是否连接		检查更新	当前已是最新版本. >
	4	软件注册	打开设置后检查注册是否过期 ———— 2020-03-31 >
设置	连接	关于系统	>

1、如果仪器在使用的过程中出现死机的情况,有可能是设备连接方式错误,请按图中所示进行连接。

2、但凡出现仪器的角度数值不显示,或者转动仪器而数值不发生变动,则为 TSever 服务平台上的注册码已过期,同时激光指示和激光下对点打不开也可能是注册过期的原因,重新注册可解决。

3、在室内使用仪器时可正常使用,但给到室外使用时,出现第一点的情况,也是 TSever 服务平台上的注册码已过期。重新注册可解决。

注册码分为两类:

第一类: 各型号仪器上仅机载软件, 注册码通过 Tsever 服务平台注册。 第二类: 测图、道桥隧装在 552 或 582 仪器上, 机载软件在原有注册码的情况下正常使用, 测图、道桥隧软件内部需要软件注册码控制。

注册方法

1、自动注册

第一类注册码: 首先申请第一类注册码, 仪器端连接 4G 或 WIFI 网络, 然后打开 TSever 服 务平台或进入到注册界面, 可自动完成注册。

第二类注册码: 首先申请第二类注册码, 仪器端连接 4G 或 WIFI 网络, 然后打开测图之星 或道桥隧之星, 在"设置"里面的"关于"找到软件注册, 点击进去完成自动注册。

2、输入注册

第一类注册码: 首先申请注册码, 打开 TServer 服务平台 → 设置 → 软件注册界面, 输入 36 位注册码, 点击注册, 可完成注册。

第二类注册码:首先申请第二类注册码,打开测图之星或道桥隧之星,在"设置"里面的 "关于"找到软件注册,点击进去输入 36 位注册码,点击注册,可完成注册。

2.2	显示符号意义
-----	--------

显示符号	内容
V	垂直角
V%	垂直角(坡度显示)
HR	水平角(右角)
HL	水平角(左角)
R/L	HR 与 HL 的切换
HD	水平距离
VD	高差
SD	斜距
Ν	北向坐标
E	东向坐标
Z	高程
m	以米为距离单位

《测绘之星操作手册》

ft	以英尺为距离单位
dms	以度分秒为角度单位
gon	以哥恩为角度单位
mil	以密为角度单位
PSM	棱镜常数(以mm为单位)
PPM	大气改正值

2.3 基本操作

主界面:

常用快捷功能图标:

① ● : 该键为快捷功能键,点击该键或者在主菜单界面左侧边缘向右滑动可唤出该功能键的快捷设置,包含激光指示、十字丝照明、激光下对点、温度气压设置、棱镜常数;

29.	该键为数	据功能键,仓	回含点数据、	编码数据》	及数据图形;		
e					Q	* 🖂	1:58
< 🤇			数据			Q,	:
数据	编码	图形					
共374条	ŧ		第1页/共8〕	页		批量	删除
名称		类型	:	编码	Ν		
1		放样点			1.00	0	
2		放样点			4.00	0	
3		放样点			7.00	0	
1		放样点			11.00	00	Ð
一	言言いいせん	는 무구 가는 가지 않는 것이 같다. 이 가지 않는 것이 있는 것이 가지 않는 것이 같다. 이 가지 않는 것이 같다. 이 가지 않는 것이 가지 않는 것이 같다. 이 가지 않는 것이 같이	⊐,) ∡ਜ ⊟. ਜ	<u>提</u> /上下]]	1 00	<u>_</u>	

注该界面可以进行坐标数据的导入和导出,操作步骤如12.1;

⑥default: 默认工程名称

三、测量

在测量程序下,可完成一些基础、快速的测量工作。 测量程序菜单:测量、文件、点放样及快速放样图形。

3.1 测量

零,用于测回法测角时使用。(可用于方向法测角时减弱度盘分划的影响)

◆[仪高/镜高]: 设置仪器高度和棱镜高度。

◆[建站]:进入到快捷建站界面,输入测站点和后视点坐标后,瞄准后视点完成建站。

◆[测量]: 进行距离测量并根据角度计算出测量点坐标。

◆[保存坐标]:保存测量计算所得的坐标

●置零/置盘界面, HR: 输入水平角度值

●仪高/镜高: 输入仪器高度和棱镜高度

注意:

①全站仪在测量过程中,应该避免对准强反射目标(如交通灯)进行激光距离测量。因为 其所测量的距离要么错误,要么不准确。

②当点击**测量**键时,仪器将对在光路内的目标进行距离测量。测距进行时应确保仪器 与目标之间通视,如有行人、汽车、动物、摆动的树枝等通过测距光路,会有部分光束反射 回仪器,从而导致距离结果的不准确。

③在无合作测量模式及配合反射片测量模式下,测量时要避免光束被遮挡干扰。

无棱镜测距

①确保激光束不被靠近光路的镜面或水面之类的高反射率的物体干扰。

②当启动距离测量时,测量系统会对光路上的物体进行测距。如果此时在光路上有临时障碍物(如通过的汽车,或下大雨、雪或是弥漫着雾),测量系统所测量的距离是到最近障碍物的距离。

③当发散的激光束的反射点可能不与十字丝照准的点重合。因此建议用户精确调整以确保激进行较长距离测量时,激光束偏离视准线会影响测量精度。这是因为光束与视准线一致。

④不要用两台仪器对准同一个目标同时测量。

对棱镜精密测距应采用标准模式(红外测距模式)

红色激光配合棱镜测距

对于不同种类的棱镜,为保证测量精度,需确保不同反射棱镜的正确附加常数。

红色激光配合反射片测距

激光也可用于对反射片测距。同样,为保证测量精度,要求激光束垂直于反射片,且需 经过精确调整。

3.2 文件

●文件界面

■■ く (え) (目) ① 】 測量 文付) 件 点放样 图形	♀ : 测量 3 €	≹ ∎ 2:47 } €	◆新建:新建一个有对应日期的工程 ◆删除:删除不需要的工程
已知点	新建 共369条	点名: 第一点		◆当前:将该工程设置为作业使用的当前工程
100107_	·····································	编码: 上一点 N: 0.000	m	◆发送:从当前工程中发送数据到手机端 MSMT
	发送 接收	E: 0.000 最末点 Z: 0.000	m m	◆接收:接收从手机端 MSMT 友迭过来的数据 ◆①工程列表:工程名称列表,首行为输入坐标的

列表

- ◆②点名列表: 点名称列表, 首行为坐标点数量
- ◆第一点:快速查看第一点的按键
- ◆上一点: 查看上一点坐标的按键
- ◆下一点: 查看下一点坐标的按键
- ◆最末点: 快速查看第末点的按键

3.3 点放样

●点放样界面

ô						♥ ≯	🟹 🖹 🗎 9:27
<	€			测量		S	à 🕜
汃	量	文件	点放样	图形			
/		dHA:	0°00'00"	点名:	2	+	上一点
(່ ເ) 前↓	:1.0579 m	编码:			
$\overline{\ }$		停 ■	:0.0000 m	N:	25585312.5880	m	下一点
		挖↓	:1.3509 m	E.	484569 8520	m	
		HA:0	°00'00"	L.	404309.0320		测量
		HD:0	.0000 m	Z:	49.5360	m	_
		Z:49.	5360 m	镜高:	1.6000	m	存储

◆dHA:测距头指向与放样点方向在水平面上
的夹角
◆前(后):棱镜相对仪器移近或者移远的距
离
◆左(右):棱镜向左或者向右移动的距离
◆填(挖): 棱镜向上或者向下移动的距离
◆HA: 放样的水平角度

- ◆HD: 放样的水平距离
- ◆Z: 放样点的高程
- ◆点名: 放样点的名称
- ◆编码: 放样点的编码
- ♦N: 放样点的北坐标
- ◆E: 放样点的东坐标
- ◆Z: 放样点的高程
- ◆镜高: 棱镜中心高度
- ◆"+":调用、新建或搜索放样点
- ◆上一点:上一个放样点
- ◆下一点:下一个放样点
- ◆测量:测量放样点坐标
- ◆存储:存储放样点测量数据

- 48 -

四、建站

ο

●在进行测量和放样之前都需要先进行建站的工作,NTS-500系列全站仪提供多种建站方式

●建站程序菜单

4.1 已知点建站

●通过已知点进行后视的设置,设置后视有两种方式,一种是通过已知的后视点设置,一种 是通过已知的后视方位角设置。

		Q 😵 🗮 🗎 10:43	◆测站: 输入已知测站点的名称, 通过[+]可
<	*	已知点建站 🛛 🔂 🞯	以调用、新建一个已知点或 GNSS 采集一个点
	测站: <mark>3</mark>	╋ 十 当前HA: 359°59'31"	作为测站点
			◆仪高: 输入当前的仪器高
	● 后视点 backSign		◆镜高: 输入当前的棱镜高
	仪高: 1.450	m 请照准后视!	◆后视点:输入已知后视点的名称,通过[+]
	镜高: 1.450	m 设置 多点定向	可以调用或新建一个已知点作为后视点
			◆方位角:通过直接输入方位角来设置后视,

也显示计算出的测站点到后视点的方位角

◆当前 HA:显示当前的水平角度

◆设置:照准后视,点击设置,完成建站。如果前面的输入不满足计算或设置要求,将会给 出提示

●已知点建站方式建站操作示例:

操作步骤	按键	界面显示
①在主菜单按"建 站"键,选择"已知 点建站"功能。	【已知点建站】	● 后视点 backSign + 当前HA: 359°59'31" ● 后视点 backSign + ○ 方位角 000°00'00" 仪高: 1.450 m 请照准后视! 镜高: 1.450 m 设置 多点定向

						♀∦ ☞ №	10:44
		< 🏼	名称	类型	编码	N	٢
③选择需要调用的		3	pt1	建站点	station	0.000	
己知占作为建立占			1	输入点	A9	0.000	
山州京下乃建筑点,	【确定】	<u></u> Ге	2	输入点		1000.000	
选择完毕返回建站			3	输入点		1000.000	
页面。			2	建站点	station	1000.000	
			n	なまたよ	otation	1000 000	
		4	输入名字	查找		取消 确定	
				_			

●多点定向与高程传递

当需要打开多点定向功能时,将两个已知点数据输入完成后,勾选多点定向,点击设置, 进入多点定向界面。

				🕈 🔻 🖹 🛢 10:28
< 法 🖲		已知点	建站	S 😰 🝼
测站:	1	+	当前HR:	56°41'24"
○ 后视点	2	+	🖲 方位角	000°00'00"
仪高:	1.590	m	请照准后初	0!
镜高:	1.601	m	设置	<mark>✓</mark> 多点定向

多点定向是利用三个或三个以上已知点定向同时也能利用这些点的高程来确定测站高程(定向及传递高程),在需要进行较高精度的测量/放样时,为了提高建站精度使用的建站方法,操作流程与后方交会类似,都是后视多个已知点,差别在于建站点的坐标一个是已知的,一个是未知的。

●多点定向界面:

- ◆列表:显示当前已经测量的已知点结果
- ◆[测量第n点]:进入到测量已知点界面(跳转至下图)
- ◆[计算]: 对当前已测量的已知点进行计算,得出测站点坐标

●测量已知点的界面:

- ◆HA: 显示测量的角度结果
- ◆VA: 显示测量的垂直角度值
- ◆SD: 显示测量的斜距值
- ◆[测角]:只测量角度(当不需要进行高程传递时可以只用测角)
- ◆[测角&测距]:测角并测距 (当需要高程传递时使用测角&测距)
- ◆[完成]:完成测量,保存当前的测量结果,返回到上一界面

●多点定向操作示例:

操作步骤	按键	界面显示
①在已知点建站界 面选择多点定向功 能,点击设置按钮	【设置(多点定向)】	●

②点击"测量第一 点",调用或新建该 已知点,设置棱镜 高,照准棱镜,点击 "测角"或"测角& 测距",完成。	【测角测距】	並 ♀ № 1931 く え ● S ④ ● 点名: + 镜高: 1.500 m HA: 359°53'49" VA: 026°45'20" SD: m 完成
③继续上述操作,完 成第二点或更多点 的测量工作,完成 后,点击下方的"计 算"。	【计算】	● ● 9.33 ◆ ● ● 9.33 ○ ● ● 测量 数据 图形 序号 名称 N 1 1 -0.876 -0.046

4.2 测站高程

●通过测量一已知高程点来得到当前测站点的高程,在部分测站点高程未知的情况下可通过 此方法获取测站高程。

			<u>H.</u>
۵ ۵		♥ 🖹 🗎 9:39	◆高程: 输入已知点高程, 可以通过调用得到
< 法 🗐	测站高程	s 🖄 🔶	已知点的高程
高程:	0.000 m 调用		◆镜高:当前棱镜的高度
仪高:	1.500 m 镜高: 1.	.500 m	◆仪高:当前仪器的高度
VD:	m		◆VD: 测站与已知点之间的高差
计算高程:	m	测量	◆计算高程:显示根据测量结果计算得到的测
测站高程:	0.000 m	设置	站高程
			◆测站高程:显示当前的测站高程

●必需要先进行设站才能进行测站高程的设置

◆[测量]:开始进行测量,并且会自动计算测站高

◆[设置]: 将当前的测站高设置为测量计算得出的高程

4.3 后视检查

●检查当前的角度值与设站时的方位角是否一致●检查当前的后视点坐标测量值与已有值是否一致●必需要先进行设站才能进行后视检查

			9 🕸 🖹 🗎 8:10	◆测立
<	*	后视检查	S 🗟 🗷	◆后袖
	测站点名:	1		后视角
	////////i///	·		◆方位
	后视点名:	2		♦НΔ
	方位角:	0°00'00"	测量	• 117
	HR:	290°20'57"		◆dHA
	dHA:	-69°39'02"	重置	♦[重]
				值

◆测站点名:显示测站点名
◆后视点名:显示后视点的点名,如果通过输入
后视角度的方式得到的点名此处将显示为空
◆方位角:显示测站点和后视点的方位角
◆HA:显示当前的水平角
◆dHA:显示 BS 和 HA 两个角度的差值
◆[重置]:将当前的水平角重新设置为后视角度

4.4 后方交会

后方交会分为角度后方交会和边角后方交会两种;

角度后方交会:使用三个或三个以上的已知点作为后视点,通过测量角度的数据,计算出当前建站点的坐标和坐标北方向。(当测距精度受环境影响较大时,可以用角度后方交会,使用时测量后视点选择测角)

边角后方交会:使用两个或两个以上的已知点作为后视点,通过测量角度和距离的数据,计 算出当前建站点的坐标和坐标被方向。(当测距精度较高同时可用后视点较少时,可以用边

角后方交会,使用时测量后视点选择测角测距)

●后方交会夹角角度不能小于 15 度和大于 165 度,更不能在一条直线上或者三角关系危险 圆上。要不然仪器就不能计算出结果,无法交会。

●基本上,测站点高程是由测距数据计算的,但是如果没有进行距离测量,则高程仅由对已 知坐标点的测角数据计算得出

				♥ ≭ ♥ 🛛 🛛	2:35	
< 法 🗐		后方交	后方交会		S 🚇 🞯	
测量	数据 图	Ŧ				
序号	名称		N	E		
1	1	1.2	2108	-0.6059		
2	2	0.8	3463	-1.0590		
3	3	0.2	2711	-1.3279		
4	4	-0.1	1916	-1.3436		
		测量第5点	计算			

●列表:显示当前已经测量的已知点结果 ◆[测量第N点]:进入到测量已知点的界面后(跳转至 下图)

◆[计算]: 对当前已测量的已知点进行计算,得出测 站点的坐标,并跳转至数据界面进行建站

●测量已知点界面

						♥ ¥ №	9:3
< 法 🤅					S	Ŕ	٢
点名:	3		+				
镜高:	0.000		m	测角			
HR:		252°33'01"					
VA:		47°59'08"		测角&测距			
SD:		2.036	m	完成			

◆[+]: 控制点的调用与新建
◆HA: 显示当前水平角和测量的角度结果
◆VA: 显示测量的垂直角度值
◆SD: 显示测量的斜距值
◆[测角]: 只测量角度(角度后方交会时使用)
◆[测角&测距]: 测角并测距(边角后方交会时使用)
◆[完成]: 完成测量,保存当前的测量结果,返回到上一界面

●后方交会操作示例:

操作步骤	按键	界面显示
①在主菜单按"建 站"键,选择"后方 交会"功能。	【后方交会】	●

③继续上述操作,完 成第二点或更多点 的输入测量工作,完 成之后,点击下方 "计算"。	【计算】	● 236 ◆ ★ ▲ 936 ◆ ★ ▲ 936 ● 376 S ④ ⑦ 測量 数据 图形 序号 名称 N E 1 1 2563378.155 480332.885 2 2 2563378.000 455329.721
④若测量与数据均 无误,则点击"前往 建站",输入测站名 点击"设置"则建站 完成。	【前往建站】	 ● ●

4.5 点到直线建站

点到直线建站是通过测量空间中的一条直线,定义该直线的起点为坐标原点,起点到终 点的方向为坐标北方向,建立一个独立坐标系,在通过建站点的几何关系完成建站。适用于 在施工过程中借助直线桥或直线隧道的几何特点建立一个小坐标系,方便施工放样。

●点到直线建站操作示例:	
--------------	--

操作步骤	按键	界面显示
 ①在测站点架设 好仪器后,在主菜 单打开建站菜单, 选择"点到直线建 站"功能。 	【点到直线建站】	● ま ▲ 6:05 ★ ● ●

③仪器照准直线 终点 B 上的棱镜中 心,点击"测量" 按键定义坐标系 北方向。	【测量 (B) 】	● # ● 9.41 く ★ ● 9.41 く ★ ● 9.41 (文高: 1.564 (文高: 1.564 m 镜高: 1.500 m A-HD: 1.542 B-HD: 1.565 测量 下一步
④检查 A-B 的平 距、高差、斜距后, 点击下一步。	【下一步】	▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

《测绘之星操作手册》

⑤检查建站坐标		< (€) (■)	9 ≵ ≥ ∎ 9.41 S 🔯 €
无误后,点击"建 站设置"完成基于 该段直线的坐标 系的建站。	【建站设置】	测站: 4 N: 0.851 E: 1.287 Z: -1.424	编码:

4.6 任意建站

任意建站采用的是先建站后定向的作业方式,通过 RTK 或超站仪采集的建站点坐标建立 一个坐标北方向待定的独立坐标系,在完成采集作业后,补采后视点坐标完成定向。步骤为 利用一个未知坐标点进行定向(设置),建站完成后在此测站采集的点数据需进行归算,进 行归算需要获取后视点的坐标。(当使用超站仪时,建站点和后视点坐标都可以由超站仪 GNSS 模块测量所得;全站仪使用该功能时需要搭配 RTK 使用,用 RTK 采集建站点和后视点 坐标)

●任意建站界面

					9 X V 🖹 1	10:5
<	🗶 🛢		任意建	站	S 🖄 🤇	9
	测站:	3	+	当前HA:	007°41'34"	
	仪高:	1.450	m			
	镜高:	1.450	m	设置	校准后视	

- ◆测站: 输入已知测站点的名称, 通过[+]可以调用或新建一个已知点作为测站点
- ◆仪高: 输入当前的仪器高
- ◆镜高: 输入当前的棱镜高
- ◆后视点: 输入已知后视点的名称, 通过[+]可以调用或新建一个已知点作为后视点
- ◆方位角:通过直接输入方位角来设置后视
- ◆当前 HA: 显示当前的水平角度
- ◆设置:照准后视,点击设置,完成建站。

●归算界面

8		🎗 🖹 🗎 10:03
く 任意建站列表		
测站点	后视点	创建时间
pt1	bs	2020-05-07 10:01:54

8			🍳 🖹 🗎 10:03
く 测站点-pt1			
名称	类型	编码	N
p1	测量点		1.049
p2	测量点		2.216
р3	测量点		2.851
p4	测量点		1.597
p5	测量点		0.4 月算
рб	测量点		0.20

●归算按钮界面

点击归算按钮,确定任意建站点对应的后视点

操作步骤 界面显示 按键 🛛 🕸 😵 🖹 🗎 10:50 < 🖈 🗐 任意建站 测站: 3 ①在主菜单点击"建 + 当前HA: 007°41'34" 站"键,选择"任意 【任意建站】 仪高: 1.450 m 建站"功能。 校准后视 镜高: 1.450 设置 m

●任意建站操作示例

④输入仪器高和棱			任音建站	♥ ¥ ♥ № ∎ 10:50
镜高,点击设置,完			日志定名	
成任意建站。"校准		测站: <mark>3</mark>	+ 当前HA:	007°41'34"
后视"功能是确定后				
视点方向的功能,可		仪高: 1.450	m	
以在建站前进行校				
准也可以建站后。		镜高: 1.450	m 设置	校准后视
※1)目前后视点的坐	标未知,方位角未知,	因此方位角和测量点的坐椅	际并不是最终	坐标(临时坐标中
的坐标)				
※2)任意建站完成后	,在该测站进行碎部点	采集,采集完后通过归算;	功能将采集的	I碎部点坐标计算成
正确坐标。				

⑤再完成该测站测量后,在主菜单点 "计算"键,选择"归 算"功能,选择任意 建站列表中要改正 的测站点。 【归算】 ● <th></th>	
 	10:03
建 5 列表 中安良正 的 测站点。 ⑥ 点击归算按钮,选 择正确的后视点坐 标,自动重新计算临 【归算】 P2 測量点 2216 p3 測量点 2851	54
● ● ● ● ● ● >	
⑥点击归算按钮,选 名称 类型 编码 N 择正确的后视点坐 p1 测量点 1.049 标,自动重新计算临 【归算】 p2 测量点 2.216 时出生系中的出生 p3 测量点 2.851	10:03
择正确的后视点坐 p1 测量点 1.049 标,自动重新计算临 【归算】 p2 测量点 2.216 P3 测量点 2.851	
标,自动重新计算临 【归算】 p ² 测量点 2.216 p ³ 测量点 2.851	
p3 測量点 2.851	
时华标金电时华标	
p4 测量点 1.597	
1且。 p5 测量点 0.4 y	ョ箕
p6 测量点 0.20	

4.7 免控建站

免控建站是根据超站仪可以实时获取测站点坐标信息的功能进行设计的建站功能,该建 站功能也能通过 RTK 与全站仪联动使用实现,该建站功能的原理为在测区内的合适地方架 设超站仪,利用 GNSS 采集获取架站点 A 坐标,开始碎部测量,同时测量公共点 C。到下 一架站点 B 并利用 GNSS 采集获取坐标,继续碎部测量,同时测量公共点 C,最后利用软 件"归算"功能,将 A、B 两个测站所测碎部点的坐标进行校正。

●免控建站界面

					🍳 🕸 🗟 🗎 1	:43
<	*		免控建	鲇	s 🗟 🝼	
	测站:	В	+	当前HA:		
	仪高:	0.0000	m			
	镜高:	1.7000	m	设置		

- ◆测站: 输入已知测站点的名称, 通过[+]可以调用或新建一个已知点作为测站点
- ◆仪高: 输入当前的仪器高
- ◆镜高: 输入当前的棱镜高
- ◆当前 HA:显示当前的水平角度
- ◆设置:点击设置,完成建站。

●归算界面

	♥ ≵ ♥	1:44				♥ 🖇 较	🖹 🗎 1:44
く归算		< 13	算 名称	类型	编码	N	
	公共占 ,		A	建站点	station	2564713.9780	
测站A.	公共点.		1	测量点		2564712.7992	
ավիեթ.	心井占・	m	2	测量点		2564713.7606	
	ム共気.		3	测量点		2564714.4673	
		_	4	测量点		2564714.9454	
●A->B 左 ○A->B 石	_	_	o ∎	三十		256/711 0120	
A面向B时,公共点所在的方位	计	算	A	<u>取消</u>		保存	

测站 A: 作业时通过超站仪 GNSS 采集或用全站仪结合 RTK 打点时采集的第一个建站点坐标

测站 B: 作业时通过超站仪 GNSS 采集或用全站仪结合 RTK 打点时采集的第二个建站点坐标

公共点:辅助虚拟坐标系定向和碎部点坐标归算的采集点

A→B 左: 当公共点位于 AB 的左侧时(确定归算的方向)

《测绘之星操作手册》

A→B右: 当公共点位于 **AB** 的右侧时(同上)

免控建站操作示例:

操作步骤	按键	界面显示		
①在测站点A架设 好仪器后,在主菜 单点击"建站"键, 选择"免控建站" 功能	【免控建站】	 ● # ※ ■ 8:11 ● # ※ ■ 8:11 ○ ④ ○ 建站菜单 后视检查 后方交会 点到直线建站 任意建站 免控建站 开昇 程序 设置 		

④完成测站点A的 坐标采集后,输入 仪器高和棱镜高, 点击"设置",完 成免控建站。	【设置】	 ◆ ◆ ● ○ ○	A 0.000 0.000	免控建站	 ♀ ★ ≅ ■ 9.09 C 330°08'07"
⑤该功能也可以 通过全站仪和 RTK 结合使用实现,先 用 RTK 采点,完成 后将点坐标导入 仪器内,建站时直 接"调用",完成 建站。	【调用】	< 名和 B B 5 6 7 - 输	次 类型 测量点 建站点 测量量点 测量量点 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	编码 N station 2 2 2	♥ ¥ ♥ № ■ 2:00 2564714.9749 2564714.9749 2564716.1815 2564715.1777 2564715.1777

⑦完成测站点 A 的 碎部点采集后,在 测站点 B 重新设 站,重复上述步 骤。	【重新设站】	◆ ★ ◆ ▲ 1/43 く ★ ● 免控建站 ③ ⑦ 测站: B + 当前HA: 仪高: 0.0000 m 镜高: 1.7000 m 後高: 1.7000
⑧完成 A、B 两个 测站的碎部点坐 标采集后,在主菜 单点击"计算", 选择"归算-免控 建站",点击"+" 选择测站 A、B 对 应的站点,以及 A、	【计算】	◆ * ♥ ■ 1:44 く 归算 测站A: + 测站B: + 公共点: + ● A ~> B 左 ○A ~> B 右 AmapBet, 公共点所在的方位 计算

B 测站上分别采集 的公共点 C, 还要 注意公共点 C 相对 于测站 A、B 的位 置。							
⑨点击"计算"后, 自动归算出准确 的碎部点坐标,点 击"保存"。完成 归算,本次作业完 成	【保存】	< 归算 测站 测站	名称 A 1 2 3 4 P	类型 建加点点 测量量量 量量量 取 <u>消</u>	编码 station	● * 《 N 2564713.9780 2564712.7992 2564713.7606 2564714.4673 2564714.9454 2564714.9454 2564711.9120 保存	

五、采集

在设站后,通过数据采集程序可以进行数据采集工作

采集菜单:

5.1 点测量

●点击"测量"键后,仪器将输出水平角度、垂直角度和斜距,然后根据建站数据自动计算出 N、E、Z坐标。

- ◆[测量]:开始进行测距
- ◆[保存]:对上一次的测量结果进行保存。
- ◆[测存]:进行测距并将结果保存

《测绘之星操作手册》

●{数据}:显示计算或实时的测量结果(下同)

●{图形}:显示当前坐标点的图形(下同)

●点测量操作示例:

操作步骤	按键	界面显示		
①建站完成后,在主		🖻 🏙 🔍 🖗 🕅 10:16		
菜单按下"采集"键,		く 😧 🗐 点測量 🛛 🔯 🔶		
选择"点测量"进入		测量 数据 图形		
测量界面。照准目标		HA: 035°28'41" 点名: 1 测量		
后按下"测量"键能	【点测重】	VA: 037°40'57"		
测量当前目标点的		N: 2564651.444 m 编码: ▼ 保存		
水平角度值、垂直角		E: 440441.119 m 現在		
度值和坐标值。		2: 264.141 m		

②按下"数据"键显		£ #		🕈 🖹 🗎 10:20
示当次测量的详细		< 🖈 🗐	点测量	s 🗟 🕁
信息,可查看点名、		测量 数据	图形	
坐标、编码、水平角		点名:	1 编码:	
度、垂首距离、水平	【数据】	N: 2564	4651.436 m HD:	0.072 m
距离, 垂直距离, 斜		Z:	264.140 m SD:	0.093 m
距 松杏王得后占土		HA: 04	44°00'11"	
<i>吧</i> , ¹		VA: 03	37°40'46"	保存
保仔				

5.2 距离偏心

作用:在无法通视的情况下,可以借助两点间的几何关系测量并计算出待测点的坐标。

●所列方向都是相对于测量者的视角,测量界面中的前后、左右、上下都与示意图相对应。 距离偏心多数为先测量后输入,或两者都可行

◆测距,输入不同参数,保存不同结果
◆测存,直接根据参数保存距离偏心的测量结
果参数不变的情况下点击保存会累加,在参数
不变的情况下改成和点测量一致。
◆[左][右]:输入左或右偏差

- ◆[前][后]: 输入前或后偏差
- ◆[上][下]: 输入上或下偏差
- ◆[测量]:开始进行测量

- ◆[保存]:数据保存
- ◆[测存]:测量并且保存
- 注: 当偏心值输入 0、0、0时,测量坐标为棱镜下方的点。
- ●{数据}:显示计算得到的坐标值和测量的结果值
- ●{图形}:显示距离偏差的图形

●距离偏心操作示例:

操作步骤	按键		界面显示	
①主菜单选择"采 集",进入"距离偏 心"。	【距离偏心】	 ● ●	采集菜单 GNSS采集 点测量 距离偏心 平面偏心 國柱中心点 计异 程序	♥ ● 10:22 S ① ● L ● ● 放 样 ● ● Q 置 ●

②对准棱镜,在下方 "左/右、前/后、上	▲ ● く ★ ● 测量 数据	距离偏心	♥ ♥ ■ 10:22 S 😰 🔶
/下"一栏输入各个 方向上棱镜与待测	<u>州重</u> 奴据 点名: <mark>1</mark>	编码: 、	▼ 镜高: 1.500 m
点的偏差值,然后按 下测量/测存,即可	 ○ 左 ● 右 ○ 前 ● 后 	0.000	m 测距 m 保存
获得待测点的坐标。	⊂ ± ● ⊤	0.000	m 测存

5.3 平面偏心

通过三点确定一个平面,并照准第4点自动算出第四点坐标,用于测量某一平面上无法架设 棱镜并回光信号弱的点位。

●上面图中的三个棱镜点确定一个平面,而无棱镜点为任意点

●平面偏心界面

●{数据}:当三个点都测量完成并且有效时,将显示计算得到的当前照准方向与三个点形成 平面的交点坐标

●{图形}: 实时显示测量点的坐标

注: 三个定位点可以重新点击重新测量计算平面。

●平面偏心操作示例:

操作步骤	按键	界面显示
①主菜单选择"采集 菜单",进入"平面 偏心"。	【平面偏心】	

④照准棱镜 C, 单击 测量键进行测量,确 定平面。	【测量】	● ●
⑤如测量点数据正 确则会提示平面已 确定,并自动计算交 点关系,跳转到数据 界面,单击保存按键 保存结果。	【保存】	▲ ● ● 平面偏心 S ④ ● 1031 < ● ● 平面偏心 S ④ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5.4 圆柱中心点

●当测图作业遇到实心的圆柱体,同时又需要测量该地物的圆柱中心坐标时,可以借助该功 能测量并计算出圆柱中心的坐标。

●首先直接测定圆柱面上(P1)点的距离,然后通过测定圆柱面上的(P2)和(P3)点方向角即可计算出圆柱中心的距离,方向角和坐标。(P1可通过目测圆柱中心确定)

●圆柱中心的方向角等于圆柱面点(P2)和(P3)方向角的平均值

成两个角度和距离的测量

●{数据}: 当测量完成后,显示计算得到的圆心坐标值和测量的结果

●圆柱中心点操作示例:

操作步骤	按键	界面显示
①主菜单选择"采 集",进入"圆柱中 心点"。	【圆柱中心点】	▲ ● ♀ ♥ ▲ ■ 10:22 ★ ● ● ● ●

②将望远镜内十字								
丝对准目标圆柱体								
一侧边缘"方向 A",	êe						9 💎 🖻 I	10
之后按确定。	< 🖈 (9	圆	住中心点	ī	S	Ŕ	
③然后转动仪器,对	测量	数据	图形					
准圆柱体的另一个	点名:	1	编码:		▼ 镜	高: 1	.500	m
边缘"方向 B" 按下	方向A:	完成	北 测角	HA:	008°25	'06"		
确定。	方向B:	完成	龙 测角	HA:	030°19	'18"		
④最后将十字丝对	中心:	完成	戈 测量	HD:	0.	586 m	保	存
准大致圆柱中心位								
置, 按下测距, 即可								
获得圆柱中心坐标。								

5.5 悬高测量

●测量一己知目标点,然后通过不断改变垂直角度,得到与己知目标点相同水平位置的点与已 知目标点的高差,例如测量隧道中的电缆等反射率低、反射面积小的地物时,可以借助该功 能测得电缆的悬高,保障施工安全。

0 4			
	日子河日		
< 🔽 🕘	总 局测重	S 🖪 🕑	•
镜高:	1.500	m	4
VA:	327°46'05"	н ¢	4
dVD:	1.501	1 m 重置基准	4
垂角:	327°46'18"	," 测角&测距	4
平距:	0.972	2 m	走

◆dVD:测量点与计算的 VD 之间的差值
◆垂角:测量点的垂直角
◆平距:测量点的水平距
◆[重置基准]:将 VA 的角度值赋值给垂角
◆[测角&测距]: 重新测量距离和角度,定位
起点

●悬高测量操作示例:

操作步骤	按键		界面显示	
①主界面选择"采 集",下拉子菜单栏 至"悬高测量"。	【悬高测量】	 ▲ ● ●	采集菜单 圆柱中心点 对边测量 线和延长点 线和角点测量 悬高测量 计界	● ■ 10:12 S ① ● Image: Constraint of the state of th

		â * < 🖈 🛢	悬高测量	♥ ♥ № 🛔 11:29 S 😰 🔶
③输入镜高。	【输入镜高】	镜高: 1.500 VA: dVD: 垂角: 平距:	m 086°29'37* m m	重置基准 测角&测距

④在镜高一栏输入				
棱镜高度,将镜头对		£ @		Q 🔯 🖹 🗎 11:29
准棱镜,按下"测距&		< 🖈 🗐	悬高测量	S 🖄 🔄
测角"按钮,得出高		镜高: 1.500	m	
度、垂角和平距的信	【测在 6 测归 】	VA:	321°06'17"	
息。	⊾侧用α侧距 】	dVD:	7.167 m	
⑤将镜头上抬,对准		垂角:	284°05'28"	重置基准
目标点,此时显示的		平距:	5.726 m	测角&测距
dVD 即为目标点的				
高度。				

5.6 对边测量

●测量平面内两个或两个以上目标点,计算出几个点之间的距离、方位角等方便施工或作图。 ●测量两个目标棱镜之间的水平距离(dHD)、斜距(dSD)、高差(dVD)和水平角(HR)。 也可直接输入坐标值或调用坐标数据文件进行计算。

●对边测量界面

ô 6				9 💎 🖹 🗎 10:35
< 法			对边测量	s 🖄 🔶
测量	数据	图形		
序号	名	称	N	E
锁定起如	台点 🔾		测量	计算

●数据的界面

ô ö				Ŷ	💎 🖹 🗎 10:38
< 🖈		对边	测量	S [X
测量	数据 图	形			
	AZ	dHD	dSD	dVD	V%
p1-p2	120°17'32"	4.420	4.426	0.224	0.051

◆[测量]:开始进行测量
◆[计算]:计算起始点与最后测量点的关系,并自动跳转到数据界面

◆[锁定起始点]:若未锁定起始点,点击计算 后可显示各相邻点间的方位角、平距差、斜距 差、高差、坡度结果,若锁定起始点,点击计 算后显示为测量的第一个点与后续各点的计 算结果。

◆AZ: 起始点到测量点的方位角
◆dHD: 起始点与测量点之间的平距
◆dSD: 起始点与测量点之间的斜距
◆dVD: 起始点与测量点之间的高差
◆V%: 起始点与测量点之间的坡度

●对边测量操作示例:

①主菜单选择"采 集",进入"对边测 量"。单击"测量" 【对边测量】、 ⁶ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	操作步骤	按键		界面显示	
锁定起始点 〇	①主菜单选择"采 集",进入"对边测 量"。单击"测量" 键。	【对边测量】、 【测量】	 ▲ ◆ ◆ ● ⑦量 数据 图形 序号 名称 锁定起始点 	对边测量 N 测量	♥ ♥ № ■ 10:35 S @ @ E

③可选择昭准下一		6 ◎ < ★ () 测量	数据 图	对达 形	2测量	♥ S	 ♥ ■ 10:38 ▲
个单击"测量"或选择"计算"看测量结果。	【测量】、 【计算】	p1-p2	AZ 120°17'32"	dHD 4.420	dSD 4.426	dVD 0.224	V% 0.051

5.7 线和延长点

●在道路或桥梁施工中,通过直线设计线的延伸,计算出线外一点的坐标,辅助施工。●通过测量两个点的坐标和输入 BE 的距离来得到待测量点的坐标

◆点 P1: 仪器到第一个测量点的斜距 ◆点 P2: 仪器到第二个测量点的斜距 ◆[测量]: 测量点 1 或者点 2 的坐标 ◆[查看]: 查看测量 P1 或 P2 的坐标 ◆[距离设置]: 输入延长距离

●距离设置的界面

◆[正/反]:选择延长方向
◆[保存]:保存延长点的坐标
◆正 P1-P2 反 P2-P1

●线和延长点操作示例:

操作步骤	按键	界面显示
 ①主菜单选择"采 集",进入"线和延 长点"。 	【线和延长点】	▲ ● ● ● ● ● ● ● ● ●

 ②照准棱镜 P1,单 击"测量"键。测 量完成后,点击 "查看",可以 查看该点的数据。 	【测量】	▲ ● ● ▲ ● ● ● ▲ 10.43 ●
③照准棱镜 P2,单 击"测量"键。测 量完成后,点击 "查看",可以 查看该点的数 据。	【测量】	▲ ●

 ④单击"距离设置", 选择延长线方向,输 入延长距离。点击 "确定"键。 	【距离设置】、 【确定】	▲ ●
⑤结果自动计算,在 数据页面显示,点击 "保存",将该计算 点保存到数据库中。	【保存】	▲ ◆ ◆ ▲ 10:44 く ◆ ● 线和延长点 S ● 测量 数据 图形 点名: 4 编码: N: 2564651.442 m HD: 1.328 m E: 440439.751 m VD: 1.291 m Z: 265.338 m SD: 1.852 m HA: 092°27'54* VA: 314°11'07* 保存

5.8 线和角点测量

●在房屋放样中,通过设计图中的一段直线测量出自定义角度与该直线的角点。●通过测量测站到两个测点的斜距和测站到待测点的方位角度来计算出待测点的坐标

Ê					9 😵 🖹 🗎 11:13
< 法	۲	线和角	自点测量	S	5 🚯 🔶
测量	数据	图形			
点名:	9	编码:	•	镜高: 1	.500 m
HA:		354°16'59"	VA:		320°08'18"
点P1:		3.627 m	测量	查看	
点P2:		2.938 m	测量	查看	
方位:	:	354°08'14"	测量	保存	

- ◆点 P1:测站到第一个测量点的斜距
 ◆点 P2:测站到第二个测量点的斜距
 ◆方位:测量得到的测站点到待测点的方位
 ◆[测量]:测量点1或者点2的坐标或者是待测点的方位
 ◆[查看]:查看测量完成点的坐标
- ◆[保存]:保存待测点的坐标

●线和角点测量操作示例:

操作步骤	按键	界面显示
①主菜单选择"采 集",进入"线和角 点测量"。	【线和角点测量】	 ▲ ● ● ●<!--</td-->

②照准棱镜 P1,输 入棱镜高。单击"测 量"键。	【测量】	▲ ◆ ▲ ●
③照准棱镜 P2, 输 入棱镜高。单击"测 量"键。	【测量】	▲ ◆

④转到待测方位,单 击方位"测量"键。	【测量】	▲ ● ◆ ♥ ■ 1123 く ● 銭和角点測量 测量 数据 图形 点名: 4 4 编码: • • (镜高: 1.500 m HA: 032°35'57" VA: 327°45'59" 点P1: 3.572 m 测量 查看 点P2: 3.094 m 测量 查看 方位: 032°20'37" 测量 (保存))) (保存)))
⑤如果方向正确,结 果自动计算,在数据 页面显示。点击保 存,将测量点数据保 存到数据库。	【保存】	▲ ● ◆ ◆ ● ● 11.26 ※ ●

5.9 点投影

用于测定某一点投影到一段线上的坐标。

点投影操作示例**:**

操作步骤	按键	界面显示
 ① 打 开 采 集 菜 单,选择点投影功 能 	【点投影】	 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

③ 在测量界面测 量该线段的端点 坐标。	【测量】、【完 成】	会 ♥ ★ № ± 805 < ★
④完成后进入下 一步,测量待投影 点的坐标。	【测量】	▲ ● * ≥ ■ 8.06 ▲ ▲ ▲ ▲ ● * ≥ ■ 8.06 ▲ ▲ ●

		▲く ★●待投影点 投影数据	♥ 兆 🗶 📦 8:09 点投影 S 😰 🎯
⑤测量完成后,	【计算】	Np: 1.260 m	点名: 3 放样
点击计算。		Ep: -0.115 m	
		Zp: 0.748 m	编码: 保存
		长度: 3.051 m	上一步
		偏距 0.732 m	
⑥ 计算出投影点		ê	9 🛪 📉 💼 8:09
的坐标和投影的		< 🖈 🗐	点放样 S 🗟 🞯
的坐标和投影的 偏距高差。点击放		< ★ <u> 放祥</u> 数据 图形	点放样 「S」(金)(の
的坐标和投影的 偏距高差。点击放 样可以将投影点	【放样】、【保	< < < < < < < < < < < < < < < < < < <	点放样 S @ @
的坐标和投影的 偏距高差。点击放 样可以将投影点 坐标调用进行放	【放样】、【保 存】	★ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	点放样 S ③
的坐标和投影的 偏距高差。点击放 样可以将投影点 坐标调用进行放 样。点击保存可以	【放样】、【保 存】		点放样 S ④ ③ + 上一点 下一点 m 测量 存储 其 HA: 4 354°47'52" m つ F: 0115 m
的坐标和投影的 偏距高差。点击放 样可以将投影点 坐标调用进行放 样。点击保存可以 将投影点坐标保	【放样】、【保 存】		点放样 S ④ ③ → 上一点 下一点 m 測量 存储 共 HA: 354°47'52" m 它 E: -0.115 m m 信 Z: 0.748 m

5.10 线高测量

用于测定河道上方某一地物至下方基准面的高度。

航道悬高操作示例:

操作步骤	按键	界面显示
 ① 打 开 采 集 菜 单,选择航道悬高 功能。 	【航道悬高】	 ● * ● * ● ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ●

六、放样

●在放样之前要进行设站操作

●放样界面菜单

6.1 点放样

●调用一个已知点进行放样

- ◆左右:棱镜向左或者向右移动的距离
- ◆填挖:棱镜向上或者向下移动的距离
- ◆HA: 放样的水平角度
- ◆HD: 放样的水平距离
- ◆Z: 放样点的高程

- ◆dHA: 仪器当前水平角与放样点方位角的差 值
- ◆[+]:调用、新建或输入一个放样点
- ◆[上一点]:当前放样点的上一点,当是第一 个点的时将没有变化
- ◆[下一点]:当前放样点的下一点,当是最后 一个点时将没有变化
- ◆远近:棱镜相对仪器移近或者移远的距离

- ◆[存储]:存储前一次的测量值
- ◆[测量]:进行测量
- ●{数据}: 显示测量的结果
- ●{图形}:显示放样点,测站点,测量点的图形关系

●点放样操作示例:

操作步骤	按键	界面显示
①在建站完成后,在 主菜单按"放样", 选择"点放样"进入 对目标点的放样操 作。	【点放样】	 ● ● か/ か/ か/ か ● ○ ○

②按[+]选择调用或 者新建一个点。 ③转动仪器至"右 转"一行显示 0 dms,即说明放样 的点在该视准线上。 ④按下"测量"键, 根据屏幕显示的"前 后"、"左右"、"填 控"进行调整棱镜, 当三个信息都为 0 时即说明棱镜所在 地就是放样点位置。	【测量】	▲ ● ● ▲ 3.06 ▲ ● 点放样 S ④ ● 放样 数据 图形 ●
--	------	---
6.2 CAD 放样

●通过导入 dwg、dxf 等 CAD 图纸,在仪器上通过软件提取图纸中的坐标信息直接进行放样。

●CAD 放样界面

●CAD 放样操作示例:

操作步骤	按键	界面显示
①在主界面打开 放样菜单,点击 CAD 放样。	【CAD 放样】	● ★ ♥ ♥ ● 5:53 ● ● ● ★ ★ ♥ ♥ ● 5:53 ● ● ● ● ● ★ ★ ♥ ♥ ● 5:53 ● ● ● ★ ★ ♥ ● ● ●

②打开 CAD 放样 功能后,点击左侧 一列第一个按键 ᠍进行图层导 入。	())	< r/>	♥ * ♥ ▲ 9:02 S ● Image: S Image: S Image: S Image: S
③选择导入 CAD 图 纸 的 格 式 dwg/dxf,找到该图 纸所在的文件夹, 点击文件进行导 入。		< 导入 文件类型: .dwg /storage/emulated/0 com_southgnss_serial com_southgnss_surveystarExpand com_southgnss_totalstationServer osmdroid 200804.dwg	 ♥ ★ ♥ ≥ ■ 10:18 ▼

⑥点击右侧第一		■ く 目标			♀ ≭ � № 🛔	10:19
个按键国可以对		共38条 线名	第	1页/共1页 お店を少せた	却上言把	4
线形列表进行		Line0	起京北坐标 2564618.916	起京东至标 440183.447	起息高柱 0.000	2!
查看,可以直接		Line1	2564628.884	440170.601	0.000	2
点击选择需要		Line2	2564630.913	440167.993	0.000	2
放栏的线形进		Line3	2564645.977	440148.940	0.000	2
从什的风心足		Line4	2564632.502	440139.019	0.000	2
行放杆。						
⑦线形放样包括		く (ま) (目 放样 数) C.	AD放样	● * ♥ № ■ T 🚇 (10:19 3
⑦线形放样包括 了起点和终点的		< < < < < < < < < < < < < < < < < < <) C 据 ● 起点 ○ 终点	AD放样	♥ X ♥ X ■ T ∰ (10:19 3
⑦线形放样包括 了起点和终点的 放样,可以直接点	【起点】、【终点】	< ()) 放样 数 ()))	AD放样 测 量	♥ * ♥ X ● T ● (存储 上一歩	10:19 •••
⑦线形放样包括 了起点和终点的 放样,可以直接点 击切换,放样流程	【起点】、【终点】	< (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	C 据 ● 起点 ○ 终点 镜高: 0.000 m 0°00'00*	AD放样 测量 HA:	♥ * ♥ ■ 丁 ④ 0 存储 <u> 上一歩</u> 9°44'21"	10:19 •••
⑦线形放样包括 了起点和终点的 放样,可以直接点 击切换,放样流程 参考点放样。	【起点】、【终点】	< (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	C 据 ● 起点 ○ 终点 镜高: 0.000 m 0°00'00" m	AD放样 测量 HA: HD:	♥ * ♥ ¥ 下 戀 (存储 上一步 9°44'21" 2602120.607 m	10:19 T
⑦线形放样包括 了起点和终点的 放样,可以直接点 击切换,放样流程 参考点放样。	【起点】、【终点】	 放样 数 dHA: 远近: 左右: 填挖: 	C 据 ● 起点 ○ 终点 镜高: 0.000 m 0°00'00" m m m	AD放样 测量 HA: HD: Z:	♥ * ♥ ■ 下 ④ 「 9°44'21" 2602120.607 r 0.000 r	10:19 •• • n

6.3 角度距离放样

●通过输入测站与待放样点间的方位角、平距及高程值进行放样

ê #		🍳 🖹 🗎 3:08	A #	🍳 🖹 🗎 3:09
< 法 🗐	角度距离放样	S 🖄 🔶	く 🚖 🗐 🦛	自度距离放样 S 🔞 🔶
放样 数据	图形		放样 数据 图形	
HA: HD:	067°24'03" 13.000 m		() 镜高: 1.500 dHA: -037*05'09"	m 测量 存储 上一步 HA: 067°24'02"
Z:	10.000 m	下一步	远近:	m HD: 13.000 m m Z: 274.047 m m

●其它见点放样中的说明

●角度放样操作示例:

操作步骤	按键	界面显示
 ①在建站完成后,在 主菜单按"放样"键, 选择"角度距离放 样"进入对目标点的 放样操作。 	【角度距离放样】	※ ● 放样菜单 点放样 点放样 角度距离放样 方向线放样 直线放样 查考线放样 支持算 社算

②根据所需,输入相 关参数后,点击【下 一步】。	【下一步】	▲ ● ● ● ● 3:08 < ① ● ● ● ● 3:08 < ② ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
③根据输入的参数, 跳转到放样界面,显 示数据。		▲ ● ● ● 3.09 ▲ ● ● ● ● 放祥 数据 图形 ● ● ● ● ● 放祥 数据 图形 ● ● ● 付HA: -037*05'09" HA: 067*24'02" ● 过后: m HD: 13.000 m ● 左右: m Z: 274.047 m ● 填挖: m ● ● ● ●

|--|

6.4 方向线放样

●通过输入待放样点的和一个已知点的方位角、平距、高差计算出坐标进行放样

ô 🗉				🍳 🖹 🛢 3:16	
< 🖈		方向线放样		S 🖄 🔶	◆点名: 输入或者调用一个点作为已知点
放样	数据	图形			◆方位角:从已知点到待放样点的方位角
	点名:	1	+		◆平距:待放样点与已知点的平距
	方位角:	045°00'00"			◆高差:待放样点与已知点的高差
	平距:	10.000	m		◆[下一步]:完成输入,进入下一步的放样的操
	高差:	0.000	m	下一步	作

●其它见点放样中的说明

●方向线放样操作示例:

操作步骤	按键	界面显示
①在建站完成后,在 主菜单按"放样"键, 选择"方向线放样" 进入对目标点的放 样操作。	【方向线放样】	● ★ ◆ N ● 249 ★ ● N ● ★ ◆ N ● 249 ● ★ ● 249 ● ▲ ● 249 ● ▲ ● 249 ● ▲ ● ● ● ● ▲ ● ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

②输入相关参数后, 单击【下一步】。	【下一步】	▲ ● ♀ ≤ ● 3:16 < ◆
③据输入的参数,显 示数据。	【测量】	● ● ● ● 2:19 く ● 方向线放样 S ● ● 放样 数据 图形 ● ● ● 放样 数据 图形 ● ● ● ● 付HA: -039*03'42" HA: 027*31'29" ● 远近: m HD: 10.228 m ● 左右: m Z: 264.993 m ● 填挖: m ●

④据计算的方位差		
转动望远镜找到正 确的方位,单击【测	【测量】	(1.500 m 测量 存储 上一步
量】按照放样指挥提示完成放样工作。		dHA: 000°00'01" HA: 027°31'29" 后↑: 9.823 m HD: 10.228 m 停■: 0.000 m Z: 264.993 m 填↑: 0.947 m 10.228 m

6.5 直线放样

●通过两个已知点,及输入待放样点在这条直线上基于起点的前后、左右、上下偏移值后计 算出放样点的坐标。

《测绘之星操作手册》

●其它见点放样中的说明

6.6 参考线放样

基线旋转示意图

基线横向偏移与纵向偏移示意图

待放样点与参考线起点的横向偏距、纵向偏距示意图

●在任意点设站,定义一条直线作为基线,然后对这条基线进行旋转、偏移获得一条参考线, 输入待放样点在参考线上基于起点的前后、左右、上下偏移值后计算出放样点的坐标。

< ★ 🗐	参考线放样		♥ ¥ ♥ № ∎ 3:36 S 🙀 🞯	◆走 ◆纟
定义参考线				▲ ≭
起始点:		+		▼1 67
结束点:		+		<u>→</u> 4
横偏移:	0.000	m		▼∥
纵偏移:	0.000	m		止ヵ
旋转角:	+000°00'00"		下一步	₩Д

●基线到参考线的选择偏移参数输入界面

◆起始点:基线一个端点
◆结束点:基线的另一个端点
◆横偏移:参考线相对于基线的横轴偏移量(左负右正)
◆纵偏移:参考线相对于基线的纵轴偏移量(前正后负)
◆旋转角:参考线与平行于基线的直线的夹角α

●基于参考线起点到放样点的偏移参数输入界面

			9 🕸 🐨 🖹 🛢 3:36
< 法 🗐	参考线放样		S 🕅 🞯
放样参数			
横偏移:	2.000	m	
纵偏移:	2.000	m	
高程差:	2.000	m	下一步

◆横偏移: 放样点相对于参考线起点的横轴偏移 量(左负右正)

◆纵偏移: 放样点相对于参考线起点的纵轴偏移 量(前正后负)

◆高程差: 放样点相对于参考线起点的高程差

●参考线放样操作示例:

操作步骤	按键	界面显示
①在建站完成后, 在主菜单按"放 样"键,选择"参 考线放样"进入对 目标点的放样操 作。	【参考线放样】	 ◆ ★ ♥ 単 10:18 ★ ● 放样菜单 点放样 点放样 CAD放样 角度距离放样 方向线放样 直线放样 支留

②输入相关参数 后,单击【下一步】	【下一步】	 	参考线放样 0.000 0.000 +000°00'00"	♥ ¥ ♥ № 336 S @ @ + + m m
③输入相关参数 后,单击【下一步】	【下一步】	 	参考线放样 2.000 2.000 2.000	♥★♥ ■ 3:36 S ④ ⑦ m m m 下一步

④ 跟据输入的参数,显示数据。	【测量】	
⑤据计算的方位 差转动望远镜找 到正确的方位,单 击【测量】按照放 样指挥提示完成 放样工作。	【测 量】	● â ● 8 ● 8 ● 327 く 余 ● 参考线放样 S ③ ⑦ 放样 数据 图形 ●

6.7 参考弧放样

●参考弧适用于轴线为弧的测量放样,弧的定义是通过圆心加半径,或圆心加上圆上的一点, 或者弧所在圆上的三点这几种方式。参考弧的方向为顺时针方向即 P1 到 P2 为顺时针。参 考弧的偏移是按照弧距、弦距、径距等确定放样点在弧上投影的位置和放样点位于弧内、弧 上或弧外。

		9 🎗 💎 🖹 🔒 11:23			9 🖇 💎 🖹 🛢 11:24
< 法 🗐	参考弧放样	S 🖄 🞯	< 法 🛢	参考弧放样	S 🕅 🞯
定义参考弧			定义参考弧		
类型			类型	17 F. 1	
🖲 圆心、起点	圆心: 1	+	🔾 圆心、起点	起点.	
○ 和半径 起			🖲 起点、终点和	终点: 3	+
() 点和终点	起点: 3	十下一步	〇 起点、弧上	半径: 2.000	m 下一步
	半径: 0.003m				

		🍳 🕸 🕅 📓 11:23			9 🖇 👽 🖹 🛢 11:25
< 法 🗐	参考弧放样	S 🖄 🞯	< 法 🗐	参考弧放样	S 🕅 🞯
放样参数			放样参数		
类型			类型	闭合差:终点	•
🖲 放样点	弧距: 0.000	m	○ 放样点		
○ 放样弧			🖲 放样弧	弧长: 0.000	m
○ 放样弦			○ 放样弦		
○ 放样圆心角	径距: 0.000	m 下一步	○ 放样圆心角	(7.05 · 0.000	
				径距: 0.000	m 下一步

		🍳 🕸 😵 🖹 🛢 11:25			🎗 🛠 🕅 📓 11:25
< 法 🗐	参考弧放样	S 🗟 🝼	< 法 🗐	参考弧放样	S 🖄 💣
放样参数			放样参数		
 类型 放样点 放样弧 放样弦 放样圆心角 	闭合差: 终点 弦长: 0.000	m	 类型 放样点 放样弧 放样弦 放样圆心角 	闭合差:终点 🗸	
	径距: 0.000	m 下一步		径距: 0.000	m 下一步

◆径距: 在圆弧上一点到圆心的方向上, 基于该点向圆外偏移径距为正, 向圆内偏移径距为 负。

◆放样点:弧距是指从参考弧起点开始起算,放样点在弧上的位置;径距是指放样点延圆心 到弧上位置的半径方向上的偏移。

◆放样弧:弧长指按固定的弧长将参考弧分割为多段弧,计算出各段弧的端点;径距指放样 点延圆心到弧上位置的半径方向上的偏移;

闭合差:选终点,指的是,在均分参考弧的时候,有余的那一部分,加在最后一个点上。选 均分,指的是,均分后,还有余的部分,再一次进行平均,加到每一个点上。选起点,指的 是,在均分参考弧的时候,有余的那一部分,加在第一个点上。

◆放样弦:弦长指按固定的弦长将将参考弧分割为多段弧,计算出各段弧的端点;径距指放 样点延圆心到弧上位置的半径方向上的偏移;

闭合差:选终点,指的是,在均分参考弧的时候,有余的那一部分,加在最后一个点上。选 均分,指的是,均分后,还有余的部分,再一次进行平均,加到每一个点上。选起点,指的 是,在均分参考弧的时候,有余的那一部分,加在第一个点上。

◆放样圆心角:圆心角指按固定的圆心角将将参考弧分割为多段弧,计算出各段弧的端点; 径距指放样点延圆心到弧上位置的半径方向上的偏移;

《测绘之星操作手册》

闭合差:选终点,指的是,在均分参考弧的时候,有余的那一部分,加在最后一个点上。选 均分,指的是,均分后,还有余的部分,再一次进行平均,加到每一个点上。选起点,指的 是,在均分参考弧的时候,有余的那一部分,加在第一个点上。

●方向线放样操作示例:

操作步骤	按键		界面显示	
①在建站完成后, 在主菜单按"放 样"键,选择"参 考弧放样"进入 对目标点的放样 操作。	【参考弧放样】	 ▼ ◆ ◆ ◆ ◆ ○ ○ ○ 点和终点 	参考弧放样 國心: 1 起点: 3 半径: 0.003m	
			手控: 0.003m	

	9 🛠 👽 🖹 🔒 11:2
< 🖈 🗐	参考弧放样 🛛 🔂 💽
定义参考弧	
——类型——	
〇 圆心、起点	起点: 1 +
 起点、终点和 	终点: 3 +
() 起点、弧上	
	半径: 2.000 m 下一步
	9 🕸 😵 📓 11:2
< 🖈 🗐	参考弧放样 🛛 🔂 💽
定义参考弧	
——类型——	
○ 周心 起占	起点: 1 十
	终点: 2 +
	弧上点: 3 十 下一步
	半径:

		 ▼ ◆ ● ◆ ◆<th>参考弧放样 起点: 1</th><th>♥ * ♥ ≥ ■ 11:24 S & ® +</th>	参考弧放样 起点: 1	♥ * ♥ ≥ ■ 11:24 S & ® +
		 〇 圆心、起点 〇 半径 起点. ④ 和终点 起 	终点: 2 弧上点: 3 半径:	+
③选择放样点的 类型,然后按照对 应的类型,除放样		 < ★ ● 放样参数 	参考弧放样	♥ ¥ ♥ № ∎ 11:23 S 🔃 🞯
点外的其他功能 输入参考弧的分	【下一步】	类型 ● 放样点 ○ 放样弧	弧距: 0.000	m
刮		○ 成件站 ○ 放样圆心角	径距: 0.000	m 下一步

一步】。		♀ ⊁ • € ≧	11:25
	< 😿 🛢	参考弧放样 🛛 🔂 🗌	•
	放样参数		
	类型 ○ 放样点	闭合差: 终点 🔻	
	 放样弧 放样弦 	弧长: 0.000 m	
	○ 放样圆心角	径距: 0.000 m 下一	步
	< ★ ●	�*♥ ≥ ■ 参考弧放样 S 🙆 [11:25 ()
		闭合差:终点	
	 放样弧 放样弦 	弦长: 0.000 m	
	○ 放样圆心角	径距: 0.000 m 下一	步

		下 9 % ♥ ≥ ■ 11.25 く 食 倉 参考弧放样 S ③ ⑦ 放样参数 ○ 一 ○ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ 0 ⑦ ⑦ 0 ⑦ 0
④跟据计算出的 放样点或作为放 样点的各段弧的 端点,显示数据。	【测量】	

⑤据计算的方位 角转动测距头找		◆ \$ ▼ \$ ■ 327 く 金 ● 参考弧放样 放样 数据<
到正确的方向,单 击【测量】按照放	【测量】	<
样提示完成放样 工作。		dHA: -169°37'51.5" HA: 009°44'27.5" 前↓: 2559694.669 m HD: 2602191.057 m 左→: 468361.687 m 高差: -18.737 m 填↑: 18.737 m 径距: -2602186.059 m

七、工程

7.1 新建工程

◆[+]:新建工程

◆点击工程列表中某一工程,可进行打开已有工程、删除工程及查看属性操作

●新建工程界面

		🛛 🕸 🔍 🖹 🖨 09:10	◆工程名称: 输入工程名称
く新建工程			◆创建时间:显示当前创建时间
			◆作业人员: 输入作业人员
工程名称:	20100101		◆备注信息: 输入备注信息
创建时间:	2010-01-01 09:09:51		◆[完成]:完成新建工程
作业人员:			
备注信息:	V 1.00.210831	完成	

八、计算

●通过计算程序进行通用计算和测量计算,并可对计算的结果进行保存。●计算程序菜单

8.1 归算

见 4.6 任意建站与 4.7 免控建站功能, 归算功能需结合任意建站或免控建站功能使用

8.2 坐标正算

●根据一已知点和从这个点的方位角和距离计算待求点的坐标

- ◆[保存]: 对计算结果进行保存, 首先要进行有效的计算
- ●{图形}:显示点的位置或者图形关系(下同)

8.3 坐标反算

●计算两个已知点之间的关系

	😌 🖹 🔳 10:15	◆[+]: 调用或者输入一个已知点的信息
く 坐标反算		
反算 图形		◆半距: 两点乙间的水半距离
	3	◆斜距:两点之间的倾斜距离
起始点: 「昇知未	~	◆高差:两点之间的高差
结束点:	m	
高差・	m	◆玻度: 显示网点之间的玻度
计算 免疫:		◆角度:两点之间的方位角
用度:		◆起始点: 输入起始点的点名
		◆结束点: 输入结束点的点名
◆[计算]: 开始进行计算		

- 182 -

8.4 面积周长

E Ö						🖹 🚊 9:11
く面	i积周长					
计算	结果	图形				
名	称		Ν	E		高程
			没有姜	坎据哦		
删网	ŧ .	上移	下移	添加	插入	计算

●根据已知点数据计算面积
◆[删除]:删除选定的列表中的点数据
◆[上移]:根据当前已知点中的数据计算面积
◆[下移]:根据当前已知点中的数据计算面积
◆[添加]或者 [插入]:选择添加点在列表中的位置
◆[计算]:根据当前已知点中的数据计算面积

■ 6	🖤 🕅 🛄 8:11
く 面积周长	
计算 结果 图形	
周长: 4.042 m	●{结果}: 显示上次的计算结果,问时显示个问单位
面积: 0.098 平方米(m²)	的面积
0.00015 亩	●[图形], 显示上次的计算结里的图形
0.00001 公顷(ha)	●{因形}: 亚小工八的日并汨木的国形
0.00000 平方千米(km²)	

- 183 -

8.5 夹角计算

- ●根据已知三点数据计算夹角
- ◆ [+]: 调用或者输入一个已知点的信息
- ◆ 点 A: 已知点 A
- ◆ 点 B: 已知点 B
- ◆ 点 C: 已知点 C
- ◆ [计算]: 计算角 BAC 的角度值

8.6 单位换算

- ●距离单位换算工具
- ◆ [换算]: 换算距离值

8.7 角度换算

- ●角度单位换算工具
- ◆ [换算]: 空白框中输入数值换算成其余两种 角度值

8.8 求平均值

- ●计算各已知点坐标的平均值
- ◆ [删除]: 删除数据
- ◆ [添加]: 调用、新建、输入和测量的方式添 加坐标点数据
- ◆ [计算]: 计算平均值, 跳转到结果界面

8.9 计算等距点

●通过两个已知点形成一条直线,根据两点间间隔点数,计算中间各点的坐标值
◆ [+]:调用或者输入一个已知点的信息
◆ 间隔点数:两坐标点之间的间距点数

- ◆ [应用]: 计算的坐标点记录到点库中
- ◆ [计算]: 显示计算结果

8.10 三角形计算

- ●根据输入的边角值,计算三角形情况
- ◆ 计算方法: 选择计算数据方法
- ◆ [计算]: 显示计算结果

- -					😵 📉 畠 6:50
く 三角形计算	算				
计算	图形				
计算方法:	边/边/边	•		计算线	結果
边(a):	3		m	面积:	6.000 m^2
边(b):	4		m	周长:	12.000 m
边(c):	5		m	边(a):	3.000 m
	江笛			边(b):	4.000 m
	17 异			边 (c):	5.000 m

●{图形}:显示该三角形的形状结果

8.11 计算器

●科学计算器(为普通计算器通用符号)

7	8	9	删除	sin	cos	tan
4				In	log	I.
1	2			π	е	٨
	0			()	V

九、程序

程序菜单下有道路设计和中线放样两个子功能。 ● 程序菜单

9.1 道路设计

- 道路设计界面
- ◆ [+]: 新建道路设计或者导入道路设计数据文件

● 平曲线设计界面

ô				🎗 🖹 🔒 10:09	▲ 利耒, 見云平曲建设计的态占粉捉利耒
く交点法	去			¢	▼ 2月代: 亚小丁曲线仪目的文点数据2月代
	列表		图形	逐桩坐标	◆ 图形: 查看平曲线设计的图形
共3条			第1页/共1页	多选	◆ 逐桩坐标: 查看平曲线设计的逐桩坐标
点名		北坐标	东坐标	第一缓曲长	◆ 设置: 点击右上角 [◇] , 进行平曲线设计参数
Pt1		0.000	0.000	5.000	いて、「「「「「「「」」」、「」」、「」」、「」」、「」」、「」」、「」、「」」、「」、「
Pt2		15.000	15.000	2.000	
Pt3		27.000	41.000	9.000	◆ [+]: 增加交点

确定

◎ S = 1000 ◆ 打桩方式:选择道路打桩方式为整桩号或整 ◆ 起始里程: 输入道路的起始里程 ◆ 里程间隔: 输入道路的里程间隔 三缓曲长 起始里程: 0.000 里程间隔: 100.000

● 增加交点界面

取消

â			🍳 🖹 🔒 10:09	◆ 交点: 点击[+]号, 通过调用或新建输入交点
く 増加交点				坐标
交点: Pt	1 +	第一缓曲:	m	◆ 输入交点其他参数: 第一缓曲长度、曲线半
北坐标:	n	n 半径:	-1 m	径、第二缓曲长度、第一缓曲起点半径、第二缓
东坐标:	n	n 第二缓曲:	m	曲线终点半径数
Rs:	□∞] n	n Re:	□∞ m	◆ [确定]:完成平曲线交点的增加。
注: 1、如果R为 2、Rs-第-	J-1,则与上一角点构成』 ─缓曲起点半径,Re-第	型交曲线 二缓曲终点半径	确定	

• 纵曲线	1211	クト凹				
ô				🎗 🖹 🛢 10:08		增加纵曲线设计数据
く 纵曲线设计					▼ [']·	
記始里程:		共0条	第1页/共1页		◆里程:	里程数据输入框
0.000	m	里程	高程	坡比	♦高程:	根据纵曲线及输入的里程计算对应的高
终点里程:					积	
50.887	m				小土	
里程:						
0.000	m					
高程:						
0.000	m					

● 增加纵曲线设计数据界面

● 机曲线汎斗用面

9.2 中线放样

根据道路设计确定的桩号和偏差来对设计点进行坐标计算和放样

● 中线放样界面

â		🍳 🖹 🛔 10:10	● 洗择一个道路设计文件作为中线放样文件
< 法 🛢	选择放样文件	S 🖄 🞯	
road1.road			
			◆ 起始里程:进行连续放样的起始位置
			◆ 步进值: 放样时,每次增加或减少的里程值
			◆ 左,右: 垂直于道路,距离道路中心点的左
起始里栏:	0.000	m	右偏差
步进值:	100.000	m	◆ 上,下: 放样点与道路中线上的设计点的高
相对于中枢	主偏差		程差值
●左 ○	右 0.000	m	◆ [下一步]:完成初步的设置,开始进入放样
●上 〇	下 0.000	m 下一步	界面

道路放样界面 🎗 🖹 🛢 10:11 ê 🖈 🗐 道路放样 放样 数据 图形 桩号: K0+010. 上一点 下一点 坐标 5 镜高: 1.500 m 测量 上一步 存储 dHA: -062°42'40" HA: 189°44'40" 远近: HD: 2602189.609 m m 左右: Z: 0.000 m m 填挖: m

● 其它见点放样中的说明

十、设置

设置分为两类:第一类是和项目相关的设置,修改这些设置只会影响到当前的项目。第二类 是和项目无关的设置,修改会影响到所有的项目。以下的说明为第二类。

●设置程序菜单

ê e	Q 🐼 🛛	4:06	ê #		9 😵 🖹 🛢 4:07
く 单位设置			く 设置		
单位设置	角度单位 度分秒(ddd°mm'ss.ssss")		校准设置	检查更新	当前已是最新版本.
角度相关设置	距离单位 米(m)		辅助功能	软件信息	
距离相关设置	泪麻菌位		功能键设置		
坐标相关设置	温氏度(℃)		恢复默认设置		
运动沉密	气压单位				
坦 川以且	百帕(hPa)		设置		

10.1 单位设置

●进行单位的设置。单位和具体的项目相关,项目不同,单位可能也不相同
◆角度单位:设置当前项目角度单位
◆距离单位:设置当前项目距离单位
◆温度单位:设置当前项目温度单位
◆气压单位:设置当前项目气压单位

10.2 角度相关设置

◆角度最小读数:角度显示精度(仅高精度仪器)

◆垂直零位:设置当前项目垂直角度显示为天 顶零或者水平零或±90

◆倾斜补偿:设置是否开启自动补偿

ê 🛎	🕈 📚 🕅 🚊 4:06
く 单位设置	
单位设置	角度单位 度分秒(ddd°mm'ss.ssss")
角度相关设置	距离单位
距离相关设置	米(m)
	温度单位
坐标相关设置	摄氏度(℃)
通讯设置	气压单位 百帕(hPa)

く角度相关设置	🍳 🗮 🗎 8:25
单位设置	角度最小读数 1"
角度相关设置	垂直零位
距离相关设置	天顶零
坐标相关设置	左右角设置 右角
通讯设置	倾斜补偿 关闭

 平均海拔

 0.000m

 格网因子

 1.0

 T-P设置

 温度

 20.000℃

🎙 💎 🖹 🛢 4:10

10.3 距离相关设置

<u>ê</u> 6	9 💎 🗟 🚔 4:10	â ă
く 距离相关设置		く 距离相关设置
单位设置	参数	单位设置
角度相关设置	距离最小读数 1mm	角度相关设置
距离相关设置	两差改正	距离相关设置
坐标相关设置	0.14	坐标相关设置
1.011777	格网因子	工师相大成直
通讯设置	比例因子	通讯设置

ê 🗃	9 💎 🖹 🔒 4:10
く 距离相关设置	
单位设置	0.000
角度相关设置	模式
距离相关设置	模式选择
之间们大汉旦	相周半久
坐标相关设置	目标
通讯设置	目标选择 无合作

《测绘之星操作手册》

●设置与距离相关的参数

- ◆距离最小读数:距离值显示精度(只支持高精度)
- ◆两差改正:设置当前项目对大气折光和地球曲率的影响进行改正的参数。
- ◆比例因子:设置当前项目测站位置的比例尺因子
- ◆平均海拔:设置当前项目测站位置的高程
- ◆格网因子:设置当前项目格网因子
- ◆温度:设置项目温度
- ◆气压:设置项目气压
- ♦PPM: 设置大气改正值
- ◆模式选择:设置测量模式
- ◆目标选择:设置测距合作目标

10.4 坐标相关设置

●设置坐标相关的参数

£1 #		🍳 🎯 🖹 🛢 4:12	◆坐标顺序:	设置坐标的显示顺序
く 坐标相关设置				
单位设置	坐标顺序 NEZ			
角度相关设置				
距离相关设置				
坐标相关设置				
通讯设置				

10.5 通讯设置

●演示模式:无需实际测量,模拟测量数据。◆坐标:输入仪器当前位置的模拟坐标。

ê ë	9 🐨 🖹 🛔 4:12	ê Ö					9 💎 🖹 🛢 4:13
く 通讯设置		く演示模	式				
通讯设置	演示模式	类型	🖲 BLH 🔵 NEZ	2	演示	模式	
校准设置		坐标	<u>调用</u>				
辅助功能		纬度:	023°00'00"				
功能键设置		经度:	114°00'00"		方位角:	000°00'00"	
恢复默认设置		椭球高:	45.000	m	速度:	0.000	

10.6 校准设置

●设置校准相关的参数

8	🎯 🖹 🗎 10:56
く 校准设置	
校准设置	指标差设置
辅助功能	视准差设置
Fn功能键设置 恢复默认设置	横轴误差设置
关于	电子气泡校正

◆指标差设置:校正垂直角补偿	
◆视准差设置:校正垂直角和水平角补偿	
◆横轴误差设置:校正横轴误差补偿	
◆电子气泡校正:设置电子气泡补偿	
◆常数设置:在有棱镜情况下测定的仪器常数 K; й	玍
无棱镜情况下测定的仪器常数 K	
◆误差结果显示:显示误差结果	

⊇ ₩	😌 📓 🖬 10:56
く 校准设置	
校准设置	横轴误差设置
辅助功能	电子气泡校正
Fn功能键设置	尚教 沿署
恢复默认设置	乘常数,加常数设置
关于	误差结果显示

10.7 辅助功能

- ●设置辅助相关的参数
- ◆十字丝照明:设置十字丝照明
- ◆开启软键盘: 设置软键盘
- ◆象限蜂鸣:设置象限蜂鸣器
- ◆测距蜂鸣: 设置测距蜂鸣器
- ◆快速编码:设置快速编码
- ◆重复点名提示:作业过程中点名重复时自动提示的开关。

◆GNSS 定位信息(超站仪特有):打开可进行坐标定位

10.8 功能键设置

●设置物理快捷键功能

â ë	🕈 🐨 📓 4:18
く 功能键设置	
校准设置	按键 Fn 激光指示开关
辅助功能	按键 - 无定义
功能键设置	按键.
恢复默认设置	无定义
设置	按键 0 无定义

≙ ◎ く 辅助功能		♀ ♥ № ≧ 4:17
校准设置	十字丝照明	
辅助功能	开启软键盘 软键盘显示	
功能键设置	GNSS定位信息	
恢复默认设置	获取精度定位信息	
设置	象限蜂鸣	

10.9 恢复默认设置

●恢复出厂设置:将各种参数恢复到出厂时的 设置

ô ö	🎗 🕸 📓 4:19
く 恢复默认设置	
校准设置	恢复默认配置
辅助功能	
功能键设置	
恢复默认设置	
设置	

10.10 设置

●检查更新及软件信息

ê ë		9 👽 🖹 🛢 4:20
く设置		
校准设置	检查更新	当前已是最新版本.
辅助功能	软件信息	
功能键设置		
恢复默认设置		
设置		

《测绘之星操作手册》

十一、数据

可以对当前工程项目中的数据进行添加、查看、删除等操作。数据管理菜单:

ô 🛎				Q 🕅	4:25
< 🖈			数据	Q	:
数据	编码	图形			
共3条			第1页/共1页		多选
名称		类型	编码	Ν	
1		测量点		2564653.384	1 4
2		测量点		2564651.143	3 4
3		测量点		2564651.442	

11.1 数据

●显示数据列表

Ô				Q 🖹	4:25					9 🕸 🔟 🗎 8:33
< 🖈			数据	Q,		< (*	数据		
数据	编码	图形				数据	编码	操作		
共3条			第1页/共1页		多选	共12条		法的新行		批量删除
名称		类型	编码	Ν		名称		肩空 奴据		N
1		测量点		2564653.38	4 4	4 1		导入数据		1.211
2		测量点		2564651.14	3 4	4 2		导出数据		
3		测量点		2564651.44	2 4	4 3			取消	0.271
					Ð	4		测重点	_	

●右上角功能键可进行清空数据及导入数据操作。

《测绘之星操作手册》

ê 0	🍳 🖹 🛔 4:2	9
く 导入		
文件类型:	*.txt 🗸	
/storage/emula	*.txt	
🥎 返回根	*.dat	
southC		

●导入数据:选择任意路径下的文件进行数据导入,可导入 TXT 和 DAT 两种格式文件。

ê ö				🍳 🖹 🔒 4:29
< 🖈		数	据	٩. :
数据	编码	图形		
取消		已选	3项	导出 删除
🖌 名称		类型	编码	Ν
✓ 1		测量点		2564653.384
2		测量点		2564651.143
🗸 З		测量点		2564651.442

●点击多选,可以批量导出数据或删除数据

●可以选择导出的数据类型

◆当选择原数据可以导出 TXT 文件。
◆当选择坐标数据,可选择多种文件格式导出,并支持编辑字段顺序。
◆当选择边角数据可以导出 TXT 文件。

◆设置字段顺序:调整导出数据中点名、编码、 N、E、Z的顺序

●点击数据列表中一点,弹出操作界面,可查看点的详细信息及删除该点

ê 🛎				Q 🖹 量 4:33
< 🖈		数据		0
数据 编码	操作			
共3条	本毛			多选
名称	브1			Ν
1	删除			64653.384 4
2				64651.143 4
3			<u>取消</u>	64651.442 4

ê ë		🍳 🖹 🛢 4:33
く 详细信息		
属性	值	
点来源	测量点	
点名	1	
编码		
目标高	1.500	
水平角	310°27'51"	
垂直角	072°55'58"	

11.2 编码

●显示编码列表,可添加自定义编码。

ê ©				Q 🛛	4:34
< 🖈			数据	Q,	:
数据	编码	图形			
共10条			第1页/共1页		多选
简码		编码			
1		A1			
2		A2			
3		A3			
4		A4			
-		A 17			

11.3 图形

●查看测量点数据的位置图形。

十二、快捷设置-★号键

点击★键或者在主菜单界面左侧边缘向右滑动可唤出该功能键的快捷设置,包含激光指示、十字丝照明、激光下对点、温度气压设置、棱镜常数;

-

12.1 激光指示

◆点击可进入下一级菜单,设置激光指示时长

œ			😵 🖹 🛢 2:11
激光指示			
	激光指示: 👥		
	● 开30s	○ 开5分钟	
	〇 开1分钟	○ 常开	

 12.2 十字丝照明

 </t

12.3 激光下对点

◆点击可进入下一级菜单,设置激光下对点照 明等级

- 0			😵 🖹 🛢 2:10
く激光下な	村点		
	激光下对点:		
	● 一级亮度	○ 二级亮度	
	○ 三级亮度	〇 四级亮度	

12.4 温度气压设置

◆温度:设置项目温度
◆气压:设置项目气压
◆PPM:自动计算大气改正值
◆获取:获取当前温度和气压
◆默认:设置默认温度和气压

			Q 🖹 🖹 🗎 11:02
く 温度气压设置			
温度:	20.0	°C	
气压:	1013.0	hPa	默认
PPM:	0.0		确定

12.5 棱镜常数

◆棱镜常数: 输入棱镜类型对应的常数

十三、仪器的检校

本仪器在出厂时均经过严密的检验与校正,符合质量要求。但仪器经过长途运输或环境 变化,其内部结构会受到一些影响。因此,新购买本仪器以及到测区后在作业之前均应对仪 器进行本节的各项检验与校正,以确保作业成果精度。

13.1 长水准器

检验

松开水平制动螺旋,转动仪器使管水准器平行于某一对脚螺旋 A、B 的连线。再旋转脚 螺旋 A、B,使管水准器气泡居中。将仪器转至 180°,查看气泡是否居中,如果不居中,则
需要校正。

校正:

1、在检验时,若长水准器的气泡偏离了中心,先用与长水准器平行的脚螺旋进行调整, 使气泡向中心移近一半的偏离量。剩余的一半用校正针转动水准器校正螺丝(在水准器右边) 进行调整至气泡居中。

2、将仪器旋转180°,检查气泡是否居中。如果气泡仍不居中,重复(1)步骤,直至 气泡居中。

3、将仪器旋转90°,用第三个脚螺旋调整气泡居中。

重复检验与校正步骤直至照准部转至任何方向气泡均居中为止。

13.2 圆水准器

检验:

长水准器检校正确后,若圆水准器气泡亦居中就不必校正。

校正:

若气泡不居中,用校正针或内六角搬手调整气泡下方的校正螺丝使气泡居中。校正时, 应先松开气泡偏移方向对面的校正螺丝(1或2个),然后拧紧偏移方向的其余校正螺丝使

气泡居中。气泡居中时,三个校正螺丝的紧固力均应一致。

13.3 望远镜分划板的检校

检验:

1、整平仪器后在望远镜视线上选定一目标点 A, 用分划板十字丝中心照准 A。

2、转动望远镜垂直手轮, 使 A 点移动至视场的边沿(A' 点)。

3、若 A 点是沿十字丝的竖丝移动,即 A' 点仍在竖丝之内的,则十字丝不倾斜不必校正。

如图, A' 点偏离竖丝中心,则十字丝倾斜,需对分划板进行校正。

校正

校正:

1、三个分划板座固定螺丝(见文字后附图)。

2、用螺丝刀均匀地旋松该四个固定螺丝, 绕视准轴旋转分划板座, 使 A' 点落在竖丝 的位置上。

3、均匀地旋紧固定螺丝,再用上述方法检验校正结果。

4、将护盖安装回原位。

13.4 电子补偿的检验与校正

检验:

1) 把仪器放置在平行光管台上,精确整平仪器。

2) 打开测绘之星软件,进入电子补偿界面。

3) 查看电子补偿值是否大于 30″,大于该值则应进行校正。

校正:

1)将仪器放置在平行光管台上,精确整平仪器

2) 打开测绘之星软件,点击设置,点击校准设置,选择指标差设置,在进行指标差校正的 过程中,仪器会同时完成电子补偿器的校正(指标差校正操作详情见14.7 竖盘指标差(i角) 的检校和竖盘指标零点设置)。

	5:46
く 校准设置	
坐标相关设置	指标差设置
通讯设置	视准差设置
校准设置	横轴误差设置
辅助功能	(1) 20 20 20 20 20 20 20 20 20 20 20 20 20
功能键设置	市奴反旦 乘常数,加常数设置
恢复默认设置	误差结果显示
关于	

13.5 竖盘指标零点自动补偿的检校

检验:

1、安置和整平仪器后,使望远镜的指向和仪器中心与任一脚螺旋X的联线相一致。

2、开机后指示竖盘指标归零, 仪器显示当前望远镜指向的竖直角值。

3、朝一个方向慢慢转动脚螺旋 X 至 10mm 圆周距左右时,显示的竖直角由相应随着变 化到消失出现"补偿超限"信息,表示仪器竖轴倾斜已大于 4′,超出竖盘补偿器的设计范 围。当反向旋转脚螺旋复原时,仪器又复现竖直角在临界位置可反复试验观其变化,表示竖 盘补偿器工作正常。

校正:

当发现仪器补偿失灵或异常时,应送厂检修。

13.6 视准轴与横轴的垂直度(2C)的检校

检验:

1)将仪器放置在平行光管台上,整平仪器,在盘左位置用望远镜分划板竖丝对准平行 光管无穷远点刻度线横丝上任意一个数值 A,如 10,读取水平角(或把水平角置零,方便 计算)。

2)旋转照准部,盘右照准同一A点,读取水平角,根据公式2C=L-(R±180°)计算 2C的值一般不能大于10"。

校正:

1) 用水平手轮将水平角读数调整到消除 2C 后的正确读数。

2)取下位于望远镜目镜分划板座护盖,用校正针调整分划板的左右两个校正螺丝,先 松一侧螺丝,后紧另一侧的螺丝,移动分划板使十字丝中心照准目标 A。

3) 重复检验步骤,校正至 2C 符合要求为止。

4) 将护盖安装回原位。

13.7 竖盘指标差(i角)的检校和竖盘指标零点设置

在完成[电子补偿的检验]、[竖盘指标零点自动补偿的检校]和[望远镜分划板检校]项目后 再检验本项目。

检验:

1)将仪器放置在平行光管台上,整平仪器,盘左用望远镜十字丝分划板横丝照准平行 光管平管刻度线竖丝上任意一点A,读取竖直角盘左读数L。

2)转动望远镜,换为盘右,再照准同一点A,得竖直角盘右读数R。

3) 若竖直角天顶为 0°, 则 i =(L+R-360°) / 2, 若竖直角水平为 0°则 i=(L+R-180°)/2。

4) 若竖盘指标差 | i | ≥10″则需校正。

校正:

1) 整平仪器,打开测绘之星软件,点击设置,点击校准设置,选择指标差设置。

2)盘左用望远镜十字丝分划板横丝照准平行光管平管刻度线竖丝上任意一点 A,点击确定。

3)转动仪器和望远镜,换为盘右,再照准同一点A,点击确定,软件弹出显示指标差, 点击确定。

4)重复检验步骤重新测定指标差(i角)。若指标差仍不符合要求,则应检查校正(指标零点设置)的三个步骤的操作是否有误,目标照准是否准确等,按要求再重新进行设置。
 5)经反复操作仍不符合要求时,应送厂检修。

く 校准设置	0.00	く 校正指标差
坐标相关设置	指标差设置	
通讯设置	视准差设置	照准目标,第一步>第二步
校准设置	横轴误差设置	VA: 281°15'13"
辅助功能	世教心里	
功能键设置	市 50.00 乘常数,加常数设置	
恢复默认设置	误差结果显示	重置确定
关于		

く校正指标差		- く 校正指标差				
照准目标, 第一步 > 第二步		照	确认			
VA: 087°23'21"		VA	指标差值为 004° 是否设置?	19'20" ,		
				<u>取消</u>	<u>确定</u>	
重置	确定		重置		确定	

●零点设置过程中所显示的竖直角是没有经过补偿和修正的值,只供设置中进行参考不能作 它用。

13.8 组合校正

组合校正是将指标差、视准差、电子补偿器的电子校正结合为同一个校正操作步骤的校准功能。

操作步骤:

1.点击设置打开设 置菜单,下拉找到 校准设置,在校准 设置菜单中选择组 合校正	【设置】、 【组合校正】	6 9:55 く校准设置 指标差设置 辅助功能 电子气泡校正 功能键设置 视准差设置 校复默认设置 组合校正
2.选择一远处地物, 在仪器盘左(正镜) 一面用十字丝照准 后点击确定。	【确定】	● ● ● ● 43 < 组合校正 测量 设置 照准目标,第一步>第二步 HA: 114*55'27* VA: 089°52'33* 重置 确定

3.转动仪器至盘右 (倒镜)一面,再 次用十字丝照准远 处地物后点击确 定。	【确定】	● ▲ < 组合校正 测量 设置 照准目标,第一步>第二步 HA: 294°55′04″ VA: 270°07′25″ 重置 确定	9:44
4.软件根据校准结 果,计算生成对应 的电子校正数值。		合 2 (4) 沙量 设置 「浸差名称 旧值 指标差 008*27*43.3° 008*27*43.3° 008*27*44.5° 「清标差 008*27*43.3° 气泡水平补偿 000*01*12.0° 「汽泡水平补偿 000*00*02.5° 「200*00*00* -000*00*00.5° 「201*2 000*00*00.5° 「201*2 000*00*00.5° 「201*2 000*00*00.5° 「201*2 000*00*00.5° 「201*2 000*00*00.5° 「201*2 000*00*00.5° 「201*2 000*00*00.5° 「201*2 000*00*00* -000*00*00* -000*00*00* (201*2) (201*2)	9:44 3位 3位 3位

13.9 竖轴与横轴的垂直度(高低差)

检验:

1)将仪器放置在平行光管台上,整平后,盘左瞄准平行光管的平管十字丝分划板中心;

2)点击置零,转动仪器对准平行光管低管分划板,转动水平螺旋使十字丝竖丝对准临 近刻度,读取水平角读数 A;

3) 换盘右重复上述操作,读取十字丝竖丝与平行光管低管分划板上相邻刻度的水平角 读数 B;

4) A 和 B 的差值应小于 0.6"。

校正方法:

物理校正:

1) 取下电池仓,拆开电池仓侧盖板;

2) 固定横轴的4颗螺丝钉,稍松开左侧或右侧的2颗;

3)根据偏差的大小和方向,使用工具上下微敲动轴承,直到满足要求,拧紧螺丝钉;

4) 校正后, 横轴转动应舒适;

- 5) 校正完后应查看 2C 值是否超限, 超限需校正;
- 6)装上侧边盖板。

电子校正操作示例

操作步骤	按键		界面显示
1.点击设置模块, 打开设置菜单, 下拉找到校准设 置,打开横轴误 差设置	【设置】、 【横轴误差设置】	< 校准设置 坐标相关设置 通讯设置 校准设置 辅助功能 功能键设置 恢复默认设置	5:16 指标差设置 视准差设置 模轴误差设置 模轴误差设置 煤蒸发设置 读意效,面积数设置 误差结果显示
		关于	

		 □ ■ 合 中 ◆ 兆 ≧ 音 9:17 く 横轴误差设置
2 .方法一:点击输		照准目标,第一步 >第二步 01/10 HA: 146°17′07.4"
入打开输入框, 将之前读取的高		VA: 96°42'56.4"
低差读数(") 输 入 到 输 入 框	【输入】、【确定】	输入 重置 确定
中, 点击确定, 完成高低差(横		< 横轴误差设置 输入
轴误差)的电子 校正		照 横轴误差: s 10 H 取消 确定
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		. 0 English

● 零点设置过程中所显示的竖直角是没有经过补偿和修正的值,只供设置中进行参考不能 作它用。

13.10 激光对点器

检验:

1、将仪器安置到三脚架上,在一张白纸上画一个十字交叉并放在仪器正下方的地面上。

2、打开激光对点器,移动白纸使十字交叉位光斑中心。

3、转动脚螺旋,使对点器的光斑与十字交叉点重合。

4、旋转照准部,每转90°,观察对点器的光斑与十字交叉点的重合度。

5、如果照准部旋转时,激光对点器的光斑一直与十字交叉点重合,则不必校正。否则 需按下述方法进行校正。

校正:

1、将激光对点器护盖取下。

2、固定好十字交叉白纸并在纸上标记出仪器每旋转90°时对点器光斑落点,如图:A、

B、C、D点。

3、用直线连接对角点 AC 和 BD,两直线交点为 O。

4、用内六角扳手调整对点器的四个校正螺丝,使对中器的中心标志与O点重合。

5、重复检验步骤4,检查校正至符合要求。

6、将护盖安装回原位。

13.11 仪器常数(K)

仪器常数在出厂时进行了检验,并在机内作了修正,使 K=0。仪器常数很少发生变化,但我们建议此项检验每年进行一至二次。此项检验适合在标准基线上进行,也可以按下述简便的方法进行。

检验:

1、选一平坦场地在 A 点安置并整平仪器,用竖丝仔细在地面标定同一直线上间隔 50m 的 B、C 两点,并准确对中地安置反射棱镜或反射板。

2、仪器设置了温度与气压数据后,精确测出 AB、AC 的平距。

3、在 B 点安置仪器并准确对中,精确测出 BC 的平距。

4、可以得出仪器测距常数:

K = AC - (AB + BC)

K应接近等于0,若 |K| >5mm 应送标准基线场进行严格的检验,然后依据检验值进行校正。

	ô î	7 🖹 🔒 6:38
₫₽	< 常数设置	
	🔿 无合作 🔾 反射板 🔘 棱镜	
♪	加常数: 0.0 mm	
	乘常数: 0.0 ppm	
	设置常数 取消设置	

◆有棱镜加常数:在有棱镜情况下测定的仪器常数 K

◆无棱镜加常数:在无棱镜情况下测定的仪器常数 K

校正:

经严格检验证实仪器常数 K 不接近于 0 已发生变化,用户如果须进行校正,将仪器加 常数按综合常数 K 值进行设置

●应使用仪器的竖丝进行定向,严格使 A、B、C 三点在同一直线上。B 点地面要有牢固清晰的对中标记。

●B 点棱镜中心与仪器中心是否重合一致,是保证检测精度的重要环节,因此,最好在 B 点用三脚架和两者能通用的基座,如用三爪式棱镜连接器及基座互换时,三脚架和基座保持 固定不动,仅换棱镜和仪器的基座。 以上部分,可减少不重合误差。

13.12 视准轴与发射电光轴的重合度

检验

1、在距仪器 50 米处安置反射棱镜。

2、用望远镜十字丝精确照准反射棱镜中心。

3、打开电源进入测距模式按[测量]键进行距离测量,左右旋转水平微动手轮,上下旋转垂直微动手轮,进行电照准,通过测距光路畅通信息闪亮的左右和上下的区间,找到测距的发射电光轴的中心。

4、检查望远镜十字丝中心与发射电光轴照准中心是否重合,如基本重合即可认为合格。 校正:

如望远镜十字丝中心与发射电光轴中心偏差很大,则须送专业修理部门校正。

13.13 基座脚螺旋

如果脚螺旋出现松动现象,可以调整基座上脚螺旋调整用的2个校正螺丝,拧紧螺丝到 合适的压紧力度为止。

13.14 反射棱镜有关组合件

1、反射棱镜基座连接器

基座连接器上的长水准器和光学对中器是否正确应进行检验。

2、对中杆垂直

如 14.8 图所示,在 C 点划 "+"字,对中杆下尖立于 C 整个检验不要移动,两支脚 e 和 f 分别支于十字线上的 E 和 F,调整 e,f 的长度使对中杆圆水准器气泡居中。

在十字线上不远的 A 点安置置平仪器,用十字丝中心照准 C 点脚尖固定水平制动手轮, 上仰望远镜使对中杆上部 D 在水平丝附近,指挥对中杆仅伸缩支脚 e,使 D 左右移动至照 准十字丝中心。此时,C、D 两点均应在十字丝中心线上。

将仪器安置到另一十字线上的 B 点,用同样的方法此时,仅伸缩支脚 f 令对中杆的 D 点重合到 C 点的十字丝中心线上。 经过仪器在 AB 两点的校准,对中杆已垂直,若此时杆上的园水准器的气泡偏离中心。

再作一次检校,直至对中杆在两个方向上都垂直且圆气泡亦居中为止。

【附录】

1、 原始数据格式

标识符	标识符中含有的信息
JOB	工程名,描述
DATE	日期,时间
NAME	测量员姓名
INST	仪器标识
VAMODE	水平零(天顶零、正负 90°)
	水平角模式 左右角
UNITS	(单位)米/国际英尺/美国英尺,度、哥恩、
	密位
SCALE	格网因子,比例因子,高程
ATMOS	温度(℃), 气压(hPa)

《测绘之星操作手册》

ST	测站点名,测站编码,测站点坐标(NEZ/ENZ), 仪器高, 时间(yyyy-mm-dd,hh:mm:ss)
ВКВ	后视点名,后视编码,目标高, 定后视的方位角(123°12′45″:123.1245), 定后视前的水平角 (123°12′45″:123.1245), 时间 yyyy-mm-dd,hh:mm:ss)
BS	点名,编码,目标高,水平角,垂直角(根据垂 直角模式转换输出),斜距,平距, 高差,坐标(NEZ/ENZ), 时间(yyyy-mm-dd,hh:mm:ss)
MP	点名,编码,NEZ(ENZ), 时间(yyyy-mm-dd,hh:mm:ss)

UP	点名,编码,NEZ(ENZ), 时间 (yyyy-mm-dd,hh:mm:ss)
GPS	点名,编码,NEZ(ENZ), 时间(yyyy-mm-dd,hh:mm:ss)
СС	点名,编码,NEZ(ENZ), 时间 (yyyy-mm-dd,hh:mm:ss)
SS	点名,编码,目标高,水平角, 垂直角(根据垂直角模式转换输出), 斜距,平距,高差,坐标(NEZ/ENZ), 时间(yyyy-mm-dd,hh:mm:ss)
ANG	点名,编码,目标高,水平角, 垂直角(根据垂直角模式转换输出) 时间(yyyy-mm-dd,hh:mm:ss)

S0	点名,编码,测量坐标(NEZ/ENZ),目标高,
	水平角,垂直角(根据垂直角模式转换输出),
	斜距,平距,高差,dx,dy,dz,
	时间(yyyy-mm-dd,hh:mm:ss)

2、 坐标数据格式

JOB	工程名,描述
DATE	日期,时间
NAME	测量员姓名
INST	仪器标识
UNITS	(单位)米/国际英尺/美国英尺
NAME CODE N E Z	点名 ,编码 , N,E,Z (五个元素可以自定义顺序)